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Abstract

Development of a Crotalaria juncea based biorefinery produce large quantity of waste glycerol after trans-esterification
of the juncea seeds. This glycerol, after purification, is used as a substrate for producing succinic acid on a microbial
route. Hydrogenation of this bio-refined succinic acid is carried out under high pressure in order to produce 1,4-
butanediol (BDO) using a batch slurry reactor with cobalt supported ruthenium bimetallic catalysts, synthesized in-
house. It is demonstrated that, using small amounts of ruthenium to cobalt increases the overall hydrogenation activity
for the production of 1,4-butanediol. Hydrogenation reactions are carried out at various operating temperatures and
pressures along with changes in the mixing ratios of ruthenium chloride and cobalt chloride hexahydrate, which are
used to synthesize the catalyst. The Ru-Co bimetallic catalysts are characterized by XRD, FE-SEM and TGA.
Concentrations of the hydrogenation product are analyzed using Gas chromatography-Mass spectrometry (GC-MS).
Statistical analysis of the overall hydrogenation process is performed using a Box-Behnken Design (BBD).
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Background
Succinic acid is reported many times as a potential plat-
form chemical produced in bio-refineries [1, 2]. This di-
carboxylic acid is an intermediate of the tricarboxylic
acid (TCA) cycle and the same could replace the maleic
anhydride produced from oil as a C4 building-block
chemical. Conversion of succinic acid (SA) to high-value
compounds has become a state-of-the-art research topic
in the last few years resulting from its large-scale micro-
bial productions utilizing waste glycerol as the primary
substrate. Many research groups from all over the world
have reported conversion of bio-refined succinic acid
into various value-added chemicals. Production of succi-
nic acid on a microbial route has been investigated with
many strains in the last decade with final concentrations
as high as 146 gl− 1 [3–6]. However, purification of succi-
nic acid is very expensive [5, 7, 8]. The purification costs
could be as high as 50–80% of the total process costs.

As an intermediate, succinic acid could be utilized to
produce some derivatives following suitable catalytic
pathways in order to make the bio-refinery a profitable
unit. Researchers have shown that the bio-based succinic
acid can be converted to 1,4-butanediol by catalytic hy-
drogenation process under high pressure [9, 10]. Succi-
nic acid can also be transformed to other useful
chemicals like gamma-butyrolactone (GBL) and tetra-
hydrofuran (THF) by the hydrogenation process using
different metal containing catalysts [11].
1,4-butanediol (BDO) is a well-known solvent in many

industries, widely used in medical, chemical, textile,
papermaking, automobile and in chemical industries
producing goods of daily-use [12]. In organic chemistry,
1,4-butanediol is also used for the synthesis of
gamma-butyrolactone, which has a great medicinal value
in the pharmaceutical industry. In addition, it is also
used as a key intermediate for producing polybutylene
succinate (PBS) and polybutylene terephthalate (PBT).
In presence of selective noble metal catalysts, it gets
converted to the important solvent tetrahydrofuran by
hydrogenation under high temperature.
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Hydrogenation of succinic acid to 1,4-butanediol occurs
via a two-step process: (i) succinic acid is first transformed
into gamma-butyrolactone by hydrogenation and then (ii)
1,4-butanediol or tetrahydrofuran is formed through suc-
cessive hydrogenation of gamma-butyrolactone with se-
lective metal catalysts [13–15]. Transition element
supported noble metals are the most effective catalysts in
hydrogenation of succinic acid. Based on their selectivity,
Platinum (Pt), Palladium (Pd), Ruthenium (Ru) and
Rhenium (Re) containing catalysts are found to be very
efficient in hydrogenation of succinic acid to gamma-
butyrolactone and other chemicals [16]. For the produc-
tion of 1,4-butanediol, however, a very strong catalyst ac-
tivity for hydrogenation of carbonyl group is also required.
Therefore, it is important to find a suitable noble metal
catalyst that has both cyclization activity (SA→GBL) and
oxidative-hydrogenation activity (GBL→ 1,4-BDO) in the
hydrogenation of succinic acid to 1,4-butanediol [17–19].
It is known that Rhenium (Re) can completely reduce
both carboxyl and carbonyl groups at a time, leading to
further hydrogenation of gamma-butyrolactone. On the
other hand, rhenium catalyst can be a possible prospect
for selective production of 1,4-butanediol in the hydrogen-
ation of succinic acid [18]. However, due to a high price of
Rhenium, other noble metals are examined as a promising
catalyst for the hydrogenation process. Ruthenium (Ru)
promoted Cobalt (Co) catalyst is found to be very effective
in the hydrogenation of succinic acid [20–22].
This piece of research is only a part of a bio-refinery

where Crotalaria juncea is used as the major feedstock.
First oil is extracted from the Crotalaria juncea seeds
[23], which then gets trans-esterified using traditional
and natural catalysts to produce a bio-diesel along with
a huge quantity of waste glycerol [24]. The waste gly-
cerol is then purified using sequential desalination [25]
and further utilized as the primary substrate for produ-
cing bio succinic acid using E.Coli during microbial fer-
mentation [26]. In this particular work, a number of
Ru-Co bimetallic catalysts are synthesized with varying
contents of Ru. These catalysts are then physically char-
acterized using XRD, FE-SEM and TG/DTA and applied
to the liquid-phase hydrogenation of succinic acid,
already bio-refined, in order to produce 1,4-butanediol
in a batch slurry reactor [27]. The effect of metal con-
tent on the physicochemical properties of the catalysts is
investigated. The yield of 1,4-butanediol is optimized
using Response Surface Methodology, using Design Ex-
pert software version 9.0.3.1. (Make: StatEase Inc., USA).

Methods
Preparation of catalyst
Ruthenium-Cobalt bimetallic catalysts with varying com-
positions are prepared for hydrogenation of succinic
acid. Cobalt chloride hexa-hydrate [Cl2CoH12O6, ACS

reagent, 98%, Sigma Aldrich, USA], ruthenium chloride
[RuCl3·xH2O, Aldrich, USA, Ru content 45–55%] and
1,4-dioxane (solvent) [Anhydrous, 99.8%, Sigma-Aldrich,
Germany] are used for synthesizing the catalyst. HPLC
grade water [Merck, India] and ammonium carbonate
[ACS reagent, Merck, India] are purchased from Merck,
India. Initially, calculated amounts of cobalt chloride
hexahydrate and ruthenium chloride are mixed together
in the ratio of 1–3% of ruthenium to cobalt and then dis-
solved in 20ml HPLC grade water to which 10% (w/w) of
ammonium carbonate solution is added with constant
stirring (500 rpm) until a pH of 8 is reached. The precipi-
tated carbonates are then filtered with Whatman filter
paper and washed several times with distilled water in
order to obtain an alkali-free precipitate. After drying the
metal carbonates at 110 °C in presence of air for 10 h,
calcination is carried out at 700 °C with a ramp rate
of 3 °C/min) in presence of air for 12 h in a muffle
furnace in order to decompose the metal carbonates.
The residues are then reduced in a high pressure
autoclave (Make: Parr Instrument Co., USA; Model:
Series 4560 Mini Reactors, 600 mL) under 45 bar
hydrogen atmosphere at 250 °C for 12 h. The auto-
clave is fitted with a stirrer, cooling coil, gas inlet/
outlet and liquid sampling system, automatic
temperature controller, speed controller for agitation,
safety rupture disc, high temperature cut-off and
pressure recording facility. This is first purged with
N2 (Linde, India; > 99.99%). A H2 gas cylinder (Make:
Linde, India; Purity: > 99.99%) is used, along with a
constant pressure regulator (Make: Concoa, Sweden),
to supply H2 at a flow rate of 80 mL/min. Initial
temperature of the reduction process is set at 100 °C
with a set of step increases of 50 °C/ 20 min until a
final temperature of 250 °C is reached. Initial pressure
is set at 20 bar and then increased to 45 bar after 1 h.
The reduced catalysts are then stored in a glove-box
in Ar (> 99.99%, Linde, India) to avoid oxidation.

Characterisation of catalyst
Physical characterization of the ruthenium promoted cobalt
catalysts with varying composition is carried out using:

a. X-Ray Diffraction (XRD): Composition and
crystalline states of the ruthenium-cobalt bimetallic
catalysts (Ru-Co) are examined by XRD (X-ray dif-
fraction) measurements [28]. XRD patterns of the
samples are obtained in the scanning angle (2θ)
range of 1° − 1185° on a Rigaku X-Ray Diffractom-
eter (Model: Ultima - III) instrument using Cu-K
radiation (λ = 1541 Å) operated at 40 kV and 30 mA.

b. Field Emission Scanning Electron Microscopy (FE-
SEM) and EDX (Energy-Dispersive X-Ray) based
analysis: A Field Emission Scanning Electron
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Microscope [Make: JEOL; Model: JSM 7610F]
[29–31] is used in order to identify the morphology
of the catalysts. EDX analysis is carried out for identi-
fying the elements present in the catalysts with their
relative weight and atomic percentages.

c. Thermo-Gravimetry and Differential Thermal
Analysis (TG/DTA): Thermal stability of these
catalysts is performed using Thermo-Gravimetry
(TG) and Differential Thermal Analysis (DTA)
(TGA) [26, 28] with a TG/DTA [Make: PerkinElmer,
Singapore; Model: Pyris Diamond] analyser. About
10mg of the sample is loaded onto a Platinum cru-
cible with alpha alumina powder being used as the
reference. A steady N2 flow rate of 150ml/min is
maintained with a specific temperature programme
(ramp at 10 °C/min from room temperature (30 °C)
to 100 °C, held for 20min and then ramp at 15 °C/
min) till a final temperature of 900 °C is reached.

Preparation of bio-refined succinic acid for hydrogenation
In this research work, initially, oil is extracted from Cro-
talaria juncea seeds using standard Soxhlet apparatus
[23] and later trans-esterified to produce biodiesel [24].
Crude glycerol is purified after separation, employing
various physico-chemical treatments. The purification
process is designed on the basis of acidification,
neutralization, solvent extraction, adsorption and finally
pressure filtration through membrane [25]. This purified
glycerol is used as the primary carbon source to produce
succinic acid using single culture of Escherichia coli. A
number of batch fermentation experiments are con-
ducted at 37 °C and 120 rpm in mineral salts medium in
a shaker incubator for 72 h with various glycerol concen-
trations to observe the cell growth and substrate
utilization rate. Succinic acid is analysed using a
High-Performance Liquid Chromatography (HPLC) sys-
tem (Make: Waters, Model: Series 200) equipped with a
C18 column. The analysis is performed using 1% aceto-
nitrile and 20mM K2HPO4 as the mobile phase and peaks
are monitored by UV detector (wavelength: 210 nm). The
concentrations of succinic acid in the unknown solutions
are estimated using standard curves prepared by plotting
peak areas versus known concentrations of succinic acid
samples. The entire process is optimized for a maximum
production of succinic acid [26].

High pressure hydrogenation of succinic acid
Hydrogenation experiment is initiated with 21.96 g suc-
cinic acid seeded with a 6.25 g Ru–Co catalyst in a high
pressure autoclave (Make: Parr Instrument Co., USA;
Capacity: 6× 10-4 m3; Material: Stainless Steel). The
total reaction volume is made up to 100 ml using a mix-
ture of 1,4-dioxane and water (solvent) in a ratio of 15:1.
Before the reaction starts, the reactor is purged with

nitrogen to remove air from the reactor thereby avoiding
the risk of hazards. The reactions are carried out at a
temperature of 250°C and a total pressure of 70 bar for
investigating the activity of Ru–Co catalyst using bio-re-
fined succinic acid as the substrate. Initial temperature
and pressure are set at 100°C and 50 bar respectively. As
time elapsed, the temperature is increased to 150°C, 200°
C and finally 250°C, where the temperature ramp is

Table 1 Experimental ranges of the independent variables for
RSM study

Variable Unit Coded variable Low High

Catalyst Concentration %Ru-Co A 1 3

Temperature °C B 180 250

Pressure Bar C 45 75

a

b

c

Fig. 1 XRD patterns of 1%, 2% and 3% Ru-Co catalyst in three
different 2θ ranges: (a) 1.0<2θ<1177.0; (b) 35.00<2θ<75.0; (c)
42.25<2θ<75.0 (average of 10 data points)
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maintained at 50°C/ 20min time interval. With the in-
crease in temperature, pressure also increases from 50
bar to 70 bar. The entire reaction is carried out for 6h
under constant agitation at 450 rpm stirrer speed. The
product is then recovered by filtration.

Analysis of 1,4-butanediol using GC/MS
A Gas Chromatograph (Make: Thermo Scientific, USA;
Model: Trace GC Ultra) with a TR-Wax MS column
(Make: Thermo Scientific, USA), 30 m long, 0.25 mm ID,
with a film thickness of 0.25 μm, equipped with an EI
(Electron Impact) detector (Make: Thermo Scientific;
Model: Polaris Q) is used to estimate 1,4-butanediol,
produced after hydrogenation of succinic acid. Helium
gas, with a flow rate of 0.3 ml/min and a linear velocity
of 10 ml s− 1, is used as carrier gas. The split ratio is kept
at 1:20. The sample is purified by filtration using a syr-
inge filter (MILLEX; GV; 0.22 μM) and 1 μL of sample is
injected for analysis. The initial temperature of the oven
is set at 70 °C for a hold-up time of 2 min. In the first
ramp, the oven is heated at a rate of 10 °Cmin − 1 to

reach a temperature of 260 °C with a holding time of 10
min. The ultimate oven temperature is set at 350 °C. 70
eV electron impact ionization (EI) mass spectra are col-
lected from the runs and the results analysed using GC/
MS Xcalibur software (Make: Thermo Scientific; Ver-
sion:3.1). The relevant chromatograms for the standard
and the 1,4 BDO samples are given in Additional file 1:
Figure S1 and Additional file 2: Figure S2).

Statistical analysis
The yield of 1,4-butanediol is then statistically analyzed
and optimized by Response Surface Methodology
(RSM) using a Box-Behnken Design (BBD) [32, 33].
The optimization process is carried out by varying three
factors viz. catalyst concentration, temperature and
pressure. Based on the three-level factorial values gen-
erated by the Design Expert software, (Make: Stat-Ease
Inc., USA; Version: 9.0.3.1), two extreme points (highest
and lowest) are used for each factor (1.0 and 3.0 wt%
for catalyst concentration, 180 °C and 250 °C for
temperature and 45 bar and 70 bar for pressure).

Fig. 2 FE-SEM images of (a) 1% Ru-Co, (c) 2% Ru-Co and (e) 3% Ru-Co bimetallic catalyst. Corresponding EDX spectra for (a), (c) and (e) are in (b),
(d) and (f), respectively
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Ranges of the variables are given in Table 1. The experi-
mental runs are performed based on seventeen different
combinations of the coded variables. The experimental
data are then analysed and a second-order quadratic
polynomial fit [see eq. (1)] is obtained. It describes the
relationship between the predicted response variable
(Yield of 1,4-butanediol) and the independent variables
of the process (catalyst concentration, temperature and
pressure).

Y ¼ β0 þ
XN

i¼1
βi � Xi þ

XN

i¼1
βiiX

2
i þ

XN

i¼1

XN

j>1
βij � XiX j

ð1Þ

Where, Y is the response (Yield of 1,4-butanediol), Xi, Xj

are the coded variables, β0 is the intercept, βi is the linear,
βii is the quadratic and βij is the interaction coefficients. N
is the number of factors considered in the experiment.
The coefficients of determination (R2) and analysis of vari-
ance (ANOVA) justify the goodness of fit. Contour plots
for the independent variables are developed from the ex-
perimental data obtained, following BBD procedures.

Results
Catalyst characterization
XRD
The X-Ray Diffraction (XRD) patterns of the reduced cat-
alysts (both monometallic and bimetallic) are shown in
Fig. 1 [(a), (b), (c)] in three different regimes of 2θ . The
same show that Co and Ru exist predominantly in the me-
tallic state. The monometallic Co displayed the character-
istic peaks of cubic Co3O4 (CoO.Co2O3), while the pattern
of the monometallic Ru showed the characteristic peaks of
Ru2O3 [Fig. 1 (c); refer XRD_Card_of_Ru_and_Co.pdf in
the Additional file 3]. The presence of carbonates of Co+ 2

and Ru+ 3 are also observed. Following Scherrer equation11

the particle size of cobalt crystallite is found to be in the
range of 30–35 nm, whereas that of ruthenium is in the
range of 22–25 nm. These values are determined from the
2θ values obtained from the XRD spectrum. No alloy for-
mation is evident as 2θ values observed correspond to
those of standard Co and Ru metal [Ru: 44.88°, 49.36°,
68.92° and Co: 48.80°, 55.84°, 74.36°].

After calcination The intensity of the Co3O4 diffrac-
tions decrease for the reduced Ru-Co samples in the
order: Ru0.1Co0.9 < Ru0.3Co0.7 < Ru0.2Co0.8. The shift of
the Co3O4 peak to lower 2θ shows that Co3O4 lattice
is expanded on addition of Ru, with lattice parameter
having increased from 8.0 79 Å2 to 8.0 83 Å. Increase
of the lattice parameter might be induced by substitu-
tion of Ru3/4+ into the octahedral sites of Co3O4

spinel. Ru can adopt several different oxidation states,
− 3 in the precursor (RuCl3) or spinel type Co2RuO4

and + 4 in RuO2 after oxidation during calcination.
From the magnitude of the increase in lattice param-
eter we can conclude that not the complete 2% or 3%
Ru addition have been substituted into the spinel

Fig. 3 TGA analysis of (a) 1%, (b) 2% and (c) 3% Ru-Co
bimetallic catalysts

Table 2 EDX analysis of different Ru-Co bimetallic catalysts

Element 1% Ru-Co 2% Ru-Co 3% Ru Co

Weight% Atomic% Weight% Atomic% Weight% Atomic%

C 14.91 40.17 10.92 23.96 9.96 24.06

O 10.69 21.63 31.96 52.62 26.38 47.82

Co 67.46 37.04 50.21 22.44 53.73 26.44

Ru 0.13 0.04 0.46 0.12 1.60 0.46

Au 6.81 1.12 6.44 0.86 8.32 1.23
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lattice. However, formation of RuO2, a form of low
crystallinity or even amorphous and not detectable by
XRD, might be there.

After reduction No diffraction peaks corresponding to
tetragonal rutile-type RuO2 could be seen in the reduced
bimetallic Ru0.2Co0.8 and Ru0.3Co0.7 samples [Fig. 1 (c)]
[34]. After reduction at 250 °C, the diffractions of Co3O4

for bimetallic Ru-Co samples disappear [Fig. 1 (c)]. The
intensity of these peaks decreases with increasing Co
content and almost disappears in Ru0.1Co0.9. The slight
shift of 2θ value for Ru from 43.3° for Ru0.3Co0.7 to
43.4° in Ru0.1Co0.9 probably corresponded to a Ru phase
that has some Co in the lattice [35, 36].

SEM/EDX
Surface morphology of these Ru-Co catalysts is visual-
ized by Field Emission Scanning Electron Microscope
(FE-SEM) [Make: JEOL, Model: JSM-7610F], which
shows the magnified surfaces of 1, 2 and 3%
Ruthenium-Cobalt catalysts (see Fig. 2). EDX analysis of
the three samples of Ru-Co show the elements present
in the catalysts with their weight and atomic percentages
(see Table 2).

The presence of Au is associated with metallic coating
of samples with gold for a clear surface morphology
under FE-SEM [26]. The elements present in the cata-
lysts are C (9.96–14.91 Wt.%), O (10.69–31.96 Wt.%),
Co (50.21–67.46 Wt.%), Ru (0.13–1.60 Wt.%) and Au
particles in the coating film (6.44–8.32 Wt.%).

TG/DTA
Thermal stability of the Ru-Co catalysts is studied by
Thermo-Gravimetric Analysis (TGA) [Make: PerkinEl-
mer, Singapore, Model: Pyris Diamond TG/DTA], under
nitrogen atmosphere (flow rate = 150 ml/min). Platinum
crucible is used with alpha alumina powder as the refer-
ence. TG/DTA results are shown in figures [Fig. 3 (a),
(b), (c)] for the three different catalyst compositions.
The TG curves (green) show weight loss against

temperature change for Ru-Co catalysts of various com-
positions. It is clearly shown that catalysts containing
less Ru encounter more weight loss than the ones with
more Ru. It is thus shown that catalysts containing lar-
ger percentage of Ru are more thermally stable during
the entire time span of reaction. The average weight loss
(%) is in the order:Ru0.1Co0.9::14.872 > Ru0.2Co0.8::9.894 >
Ru0.3Co0.7::8.117. On the other hand, at 250 °C

Fig. 4 Pathway A: Reaction route for the production of 1,4-butanediol from bio-refined succinic acid

Fig. 5 Pathway B: Reaction route for the production of 1,4-butanediol and other byproducts
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(maximum temperature reached during high pressure
hydrogenation) the weight loss (%) is in the order:-
Ru0.1Co0.9::15.091 > Ru0.2Co0.8::9.964 > Ru0.3Co0.7::8.186.
This is probably because of an obvious carbon depos-
ition over the catalysts (refer Table 2) during calcination.
However the weight loss is not that prominent as reduc-
tion (following calcination) is strictly carried out under
highly pure H2 atmosphere.
The DTA curves of the samples exhibited mostly endo-

thermic peaks for the entire temperature regime. There is a
prominent endothermic peak at approximately 270 °C for
Ru0.1Co0.9 (could be assigned to the removal of adsorbed
water) while the endothermic peak appears at around 460 °
C in case of Ru0.3Co0.7. For Ru0.2Co0.8 however, a small
endothermic peak appears at a much higher temperature,
at around 835 °C. Here, H2 acted as a reductant to reduce
the metal oxides to metallic Co and Ru. Ru might have re-
duced first due to a low reduction temperature. The re-
duced Ru could act as a promoter to improve the reduction
of Co. When the temperature is > 300 °C weight losses of
the catalysts are found to be much smaller.

Production of 1,4-butanediol
It has been our primary objective to develop an effi-
cient bimetallic catalyst to catalyze high pressure hy-
drogenation of bio-refined succinic acid (refer Fig. 4
Pathway A) in order to produce BDO. In the present
work, only up to 6.04% BDO yield is achieved over a
bimetallic Ru0.3Co0.7 catalyst while hydrogenating
bio-based succinic acid under a high pressure of ap-
proximately 62 bar and 250 °C.
The correlations between the catalyst structure and

catalytic performance of the Ru-Co catalysts with
various Co contents are already discussed in the pre-
vious section. This is to have an idea on the probable
active sites and reaction mechanism. After cyclization
of succinic acid to GBL, ring-opening−hydrogenation
to BDO takes up complex pathways. In Pathway A
[37], a C4 hemi-acetal analogue of 2-HTHP, 2-
hydroxytetrahydrofuran (2-HTHF), is likely to be
formed by hydrogenation of GBL [38, 39].
Reduction capacity of Co is increased by a small

amount of Ru (∼10 mol%) in the bimetallic catalyst.

Table 3 Design matrix of Box-Behnken Design data

Run Factor 1- A:Catalyst Concentration,%Ru-Co Factor 2- B:Temperature, °C Factor 3- C:Pressure, Bar Response 1-
Yield of 1,4-BDO, %

1 1 250 60 0.41

2 1 180 60 0.26

3 2 180 75 3.44

4 3 250 60 5.01

5 2 215 60 3.64

6 2 250 75 3.67

7 2 250 45 3.91

8 2 215 60 4.69

9 2 180 45 3.66

10 2 215 60 4.09

11 2 215 60 4.03

12 3 215 45 4.38

13 2 215 60 4.01

14 3 215 75 5.03

15 1 215 75 0.63

16 3 180 60 4.63

17 1 215 45 0.39

Table 4 Various models tested for the response

Sequential Lack of Fit Adjusted Predicted

Source p-value p-value R-Squared R-Squared

Linear < 0.0001 0.0470 0.7723 0.6920

2FI 0.9954 0.0247 0.7059 0.3849

Quadratic 0.0007 0.6334 0.9585 0.8876 Suggested

Cubic 0.6334 0.9507 Aliased
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This results in higher activity and selectivity of the
catalyst. Several other mechanisms can also explain
this process of hydrogenation to produce BDO. Con-
sidering Fig. 5 Pathway B [37], GBL first gets hydro-
genated to 2-HTHF, which then equilibrates with
4-HB (a ring-opened tautomer of 2-HTHF). A rapid
hydrogenation to BDO over the metallic active sites
follows thereafter. This reaction pathway is similar to
the hydrogenation of 2-HTHP, the hemiacetal 2-
hydroxytetrahydropyran, to 1,5 pentanediol [40] and
an analogous C6 route from tetrahydropyran-2
-methanol to 1,6-hexanediol [41].

RSM-BBD modeling
Using three numeric factors BBD is employed to de-
termine the yield of 1,4-butanediol. Variation of
numeric factors under different conditions are
presented in Table 3.
The experimental data are fitted to various models like

linear, 2FI, quadratic and cubic ones and compared in
Table 4 and suitable statistical inferences are drawn.
After performing the ANOVA analysis (see Table 5), it

is shown that the quadratic model is significant having a
p-value lower than 0.0001, a determination coefficient
R2 = 0.982, a value of the adjusted determination

Table 5 Analysis of variance (ANOVA) for the response surface quadratic model

Source Sum of Squares df Mean Squares F Value p-value
Prob > F

Model 45.56 9 5.06 42.06 < 0.0001 significant

A-Catalyst Concentration 37.67 1 37.67 312.94 < 0.0001

B-Temperature 0.13 1 0.13 1.06 0.3376

C-Pressure 0.023 1 0.023 0.19 0.6745

AB 0.013 1 0.013 0.11 0.7500

AC 0.042 1 0.042 0.35 0.5732

BC 1.000E-004 1 1.000E-004 8.307E-004 0.9778

A^2 6.99 1 6.99 58.07 0.0001

B^2 0.22 1 0.22 1.79 0.2232

C^2 0.16 1 0.16 1.34 0.2844

Residual 0.84 7 0.12

Lack of Fit 0.27 3 0.090 0.63 0.6334 not significant

Pure Error 0.57 4 0.14

Cor Total 46.41 16

Fig. 6 Model predictions versus measured response, 1,4-Butanediol yield
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coefficient (adjusted R2) = 0.959 and a value of the coeffi-
cient of variation (CV) = 10.56%.
he Lack of Fit is significant with a value of 0.63 and the

second order polynomial eq. (2) represents the mathemat-
ical relationship between the response and the independ-
ent variables in the Box–Behnken experimental design.

Yield ¼ 4:09þ 2:17Aþ 0:13Bþ 0:054C þ 0:057AB
þ0:1AC−5:000E−003BC−1:29A2−0:23B2−0:2C2

ð2Þ

Using the developed model equations, experimental
values are plotted against predicted values of yield in
Fig. 6, indicating that the models are successful in cap-
turing the correlation between the reaction parameters
with respect to the response.

Influence of the process parameters on 1,4-butanediol yield
The 3D graph (see Fig. 7) shows that the yield of
1,4-butanediol increases with the catalyst containing
more ruthenium due to enhanced thermal stability of
the same. The yield of butanediol is also maximized at
the highest reaction temperature (see Fig. 7). In terms of
pressure, it is clearly seen that the yield of butanediol in-
creases if optimal stability pressure increases.

Optimization of process parameters
The high-pressure hydrogenation process is optimized
to maximize 1,4-butanediol production yields utilizing
bio-refined succinic acid using Ru-Co bimetallic catalyst.
In order to satisfy the optimum conditions of the
process, all the process parameters, along with the
response, are defined and given in Table 6 with their re-
spective high and low limits. Following this, a new set of
experiment is carried out using these optimized values.

Fig. 7 3D Response surface plots showing the effect of various independent process variables on 1,4-Butanediol yield: (a) Effect of catalyst
concentration and temperature on the yield of 1,4-Butanediol, (b) Effect of catalyst concentration and pressure on the yield of 1,4-Butanediol
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The optimum conditions generated by the statistical ana-
lysis are: catalyst concentration = 2.86 wt% (≡Ru0.3Co0.7),
temperature = 235.65 °C and pressure = 60.93 bar with the
optimum yield being 5.04%, implying that under this
optimum condition all the parameters of this statistical ana-
lysis gives its highest response. High pressure hydrogen-
ation is conducted at these optimum conditions and the
yield has been found to be approximately 6%.

Conclusions
A series of Ru-Co catalysts are prepared by an incipient
wetness impregnation method. The prepared catalysts
are applied for hydrogenation of succinic acid, already
bio-refined using microbial fermentation of waste gly-
cerol, to produce 1,4-butanediol under high pressure.
The yield of 1,4-butanediol increased with the percent-
age of ruthenium present along with cobalt in Ru-Co bi-
metallic catalysts. It is concluded that ruthenium-cobalt
catalyst prepared by wet impregnation method can be a
very effective catalyst towards the formation of 1,4-buta-
nediol by high pressure hydrogenation of succinic acid.
With bio-refined succinic acid as the starting material,
the production of 1,4-butanediol under high pressure
has been found to be cost-effective. In order to avoid the
expensive process of purification of succinic acid from
the fermentation broth, ultimately these derivatives
could be produced directly in the fermentation broth if
an optimally selective and active catalyst could be syn-
thesized. It would also be a new challenge to overcome
the inhibition scenarios that would arise while carrying
out the catalytic production of the derivatives right
within the fermentation broth. This could be so done
since the hydrogenation reaction under high pressure
could be carried out completely in gas phase under high
pressure and all sorts of diffusional resistances (both film
and pore) could be minimized.

Endnotes
1The Scherrer equation, in X-ray diffraction and crys-

tallography, is a formula that relates the size of
sub-micrometre particles, or crystallites, in a solid to the
broadening of a peak in a diffraction pattern. It is named
after Paul Scherrer. It is used in the determination of
size of particles of crystals in the form of powder.

2Under common ambient conditions, the thermo-
dynamically favored form of the cobalt oxide often is the
normal spinel structure Co3O4 with a lattice constant a0
= 8.079 Å.
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