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Abstract

This paper presents a new method for process synthesis and economic assessment for solid drug product
manufacturing, considering continuous manufacturing as a prominent process alternative. Of the three phases of
drug development, phase II was targeted where the dosage form, formulation, and processing technology are
determined. For a comprehensive alternative generation, a superstructure was developed that covered 9452
options for the unit level, which was combined with two options on the formulation strategy. The generated
alternative was assessed by a net present value calculation model, which was adapted for dynamic cash flow
consideration in the drug lifecycle. The model can incorporate uncertainty in the drug development and
manufacturing in the result, and can perform global sensitivity analysis by Monte Carlo simulation. The method was
demonstrated in a case study where two different scenarios regarding the price of the active pharmaceutical
ingredient and the demand for the product were assumed. The results showed that when the demand and price
are both low, the labor-related costs are dominant, and in the opposite case, the material-related costs become
relevant. We also introduce the prototype version of the software “SoliDecision,” by which the presented method
was implemented for industrial application.

Keywords: Continuous manufacturing, Pharmaceutical manufacturing, Tablets, Formulation, Clinical development,
Process design, Alternative generation, Decision-making, Monte Carlo simulation, Sensitivity analysis

Introduction
Solid drug products such as tablets or capsules are the
most produced drugs, from among all types of drug prod-
ucts. As a result of the high level of research and develop-
ment activity in this area, 31 new solid drugs were
approved by the Food and Drug Administration of the US
(FDA) in 2018 [1, 2]. Solid drug products are generally
manufactured through a chain of powder-processing units
with the active pharmaceutical ingredient (API) as the
starting material. Examples of such units include mixing,
granulation, drying, compression, and coating, which are
connected linearly without recycling of the materials. Vari-
ous alternatives exist on the unit level, such as direct com-
pression, which skips granulation, and on the product

level, such as different formulation or dosage form. When
designing a process, numerous alternatives need to be syn-
thesized, analyzed, and evaluated to determine the more
promising ones, in parallel with the clinical development,
which is, by nature, uncertain.
The difficult task of process design has become more

complex with the emergence of continuous manufactur-
ing. The latter technology literally enables continuous pro-
cessing of powder materials in the abovementioned units,
which in the current practice are performed batchwise.
There is a strong expectation in solid drug product manu-
facturing that continuous manufacturing would replace
batch manufacturing [3]. From 2015 to date, the FDA has
approved the use of continuous manufacturing for five
products [4]. The potential benefits of continuous manu-
facturing are ease of scale-up, flexibility in demand
change, and the capability of reducing the number of op-
erators [5]. Ongoing discussions on the regulatory aspects
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such as control strategy [6, 7] are consolidating the way to
implement this new technology, which promises to make
some of the units or even the entire process continuous
[8]. However, the progress in continuous manufacturing
requires coping with the increased complexity in the
process design.
Previous studies on process-related issues in solid drug

product manufacturing have focused on specific produc-
tion units, in particular, granulation and compression. The
population balance model (PBM) has been widely applied
to batch high-shear [9], fluidized-bed [10], and continuous
twin-screw granulation [11]. Tamrakar and Ramachandran
integrated PBM with the discrete element method (DEM)
and computational fluid dynamics (CFD) for modeling
fluidized-bed granulation [12]. Applications of DEM and
other advanced simulation techniques were used for roller
compaction [13], compression [14], and coating [15].
Several authors have covered the entire manufacturing

process. Flowsheet models have been developed to predict
dynamics for processes based on direct compression [16],
dry granulation [17], and wet granulation [18]. Singh et al.
developed a control strategy for dry granulation and imple-
mented it into a process-wide flowsheet based on first-
principles models [19]. In a case study, Schaber et al.
assessed the economic performance of the integrated API
and tablet manufacturing process, highlighting the benefits
of continuous manufacturing [20]. Aigner et al. proposed a
ranking-based economic comparison method between
batch and continuous processes, which can be used in the
early stages of process development [21]. For the later de-
velopment stages, Matsunami et al. presented a method for
selecting batch and continuous processes based on the net
present operating cost [22]. By conducting industrial scale
experiments, Matsunami et al. compared the product qual-
ity and process performance of both processes, providing
insights for process-related decision-making [23]. However,
the focus in these previous studies has been limited to spe-
cific technologies and products, such as wet granulation,
and ethenzamide tablets, respectively.
Decision-making is always associated with uncertainty.

Several authors tackled this relevant issue in drug develop-
ment and manufacturing. Sundaramoorthy et al. per-
formed capacity planning in continuous manufacturing
based on a two-stage (“here-and-now” and “wait-and-see”
decisions) stochastic programming approach [24, 25].
Marques et al. proposed a framework for product-launch
planning based on multiobjective integer programming
and Monte Carlo simulation (MCS) [26, 27]. Walther
et al. applied MCS for biopharmaceutical manufacturing,
to quantify the possible range of net present value (NPV)
considering uncertain events such as success/failure in
clinical trials [28]. For the pharmaceutical industry, MCS-
related techniques have a great potential for use in process
and product development, which are by nature uncertain.

Another prerequisite for decision-making is a holistic
viewpoint. This is particularly important for solid drug
manufacturing, where new technologies such as continu-
ous manufacturing are intensively developed. In the field
of process systems engineering (PSE), superstructures that
consider various alternatives simultaneously have been
studied. Prominent examples include the flowsheet super-
structure [29], state-task and state-equipment networks
[30, 31], stepwise superstructure [32], and the processing
step-interval network [33]. However, the application of
these otherwise useful techniques for pharmaceutical
manufacturing processes is still limited.
In this work, we present a new method for process syn-

thesis and economic assessment for solid drug product
manufacturing, considering continuous manufacturing as a
prominent process alternative. The main aim was to provide
a new mechanism for exhaustive enumeration and eco-
nomic assessment of process alternatives considering the
uncertainties in the product and process development. Of
the three phases of drug development, phase II was targeted,
where the dosage form, formulation, and processing tech-
nology are determined. A superstructure was developed for
the generation of a comprehensive alternative that covers
numerous options at the unit level; this superstructure was
combined with the formulation strategy options. The gener-
ated alternative was assessed using an MCS-based model for
calculating NPV, followed by a global sensitivity analysis.
The workflow was demonstrated in a case study where two
different scenarios regarding API price and demand were
assumed. We also introduce the prototype version of the
software “SoliDecision,” which implemented the presented
method for an industrial application. An earlier version of
the process synthesis and stochastic economic evaluation
was presented at the 13th International Symposium on
Process Systems Engineering [34].

Method
Superstructure-based process synthesis
Superstructure representation
We define a superstructure representation of solid drug
product manufacturing processes (Fig. 1). The method of
Wu et al. [35], which defines units, ports, and streams, was
adopted. The units are categorized into three types, source,
sink, and general units, which were used to represent the
provision of raw materials, collection of final products, and
unit operations, respectively (see Tables 1 and 2 for the def-
initions). The ports are the interfaces between the units,
which, in this work, represent materials such as granules.
The presence and absence of API in the stream were de-
fined with solid and dotted arrows, respectively. Streams
were defined that skip a certain unit(s) to describe the
choice of performing the unit(s), e.g., direct compaction
that does not involve roller compaction (U9), wet granula-
tion (U10 and U11), drying (U12), and milling (U13). A
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process alternative is defined as a combination of the
streams, ports, and units from the source to the sink units
(i.e., a combination of raw materials, processing technolo-
gies, and dosage form). The process is linear, i.e., there is
no recycling, and the API is never split into multiple
streams in an alternative route.
The key consideration here was to reflect on the char-

acteristics of the process, namely, the dependence of the
used materials on the process alternative. For example,
when wet granulation (U10 and U11) is selected, water
must be included in the ports before the unit and in the
source (Sc). Likewise, the presence of coating (U16), en-
capsulation (U17), or packaging (U18) will require coating
agents, capsules, or packages in the system, respectively.
The method of Wu et al. [35] can explicitly define the
presence and composition of the materials and thus was
suitable for our purpose.

Comprehensive alternative generation
The superstructure in Fig. 1 was developed based on the
literature survey as well as the expert knowledge of the
industrial coauthors. The superscripts of the general

units specify whether the operation is batch (B) or con-
tinuous (C). In total, 9452 process alternatives could be
defined in Fig. 1, and their breakdown is presented in
Additional file 1. The number of alternatives was calcu-
lated by separating the superstructure into parts (see
Additional file 1 for the details). This superstructure can
be updated by adding new units and/or combinations of
units when they become of interest in the analysis.
In this study, the process alternative was denoted as

“continuous technology” if all unit operations are inter-
connected with units of the continuous operation mode.
Consequently, the alternative will have a single manufac-
turing rate for the entire process. If the batch mode is
used in any unit, the alternative is regarded as “batch
technology,” i.e., all units are performed stepwise.
Besides the process alternatives, the formulation con-

cept for different doses was considered. In general, in
clinical development, at least two doses are produced,
for which two options are available. One is “proportional
dosage,” which means that all doses have the same com-
position ratio with different weights. The other is “com-
mon dosage” which means that all doses have the same
weight but the composition ratios differ. Combinations
of these two are also possible. Depending on this choice,
the required amounts of the raw materials for the prod-
ucts and the placebos are different, and the consequen-
tial economic performance is affected. In this work, we
considered the two options of proportional and common
dosage as the choice of formulation strategy.
In this study, an alternative was defined as a combin-

ation of the process alternative and formulation strategy,
i.e., 9452 × 2 = 18,904 alternatives can be enumerated from
the superstructure and assessed one by one. In practice,
the generation of alternatives could start with a reduced
number of alternatives, due to case-specific reasons. Ex-
amples of the constraints are the resource availability for
development and production, the characteristics of the

Table 1 Description of the source and sink units

Name of source/sink
unit

Description

Sa Provision of API

Sb Provision of additives (e.g., excipients and/or
disintegrants)

Sc Provision of aqueous binder solution

Sd Provision of additives

Se Provision of capsules

Sf Provision of coating agents

Sg Provision of packages (e.g., blister packages)

Sp Collection of solid drug product

Fig. 1 Developed superstructure for solid drug product manufacturing processes
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powder materials, or the company preference based on
past experience and/or market characteristics. In the case
study presented here, we considered three process alterna-
tives using wet granulation (UC

10 , U
B
10 , and UB

11 ) and two
formulation strategies (common and proportional), i.e., six
alternatives in total. The parts in Fig. 1 marked in blue are
the considered alternatives. The choice was because our
drug product of interest was suitable for wet granulation.

Economic assessment model
Overview of economic assessment
An overview of the cash flow in the drug lifecycle is illus-
trated in Fig. 2. The decision stage (τ = 0) is the beginning
of phase II in clinical development, where the dosage

form, formulation, and processing technology are de-
termined. The design problem was defined as “given
the product formulation, find the best process alter-
natives (a combination of dosage form, processing
technology, and raw material) and formulation strat-
egy (proportional or common) that maximizes the
economic performance.” The economic objective func-
tion, NPV(l) [$] was defined as a function of alterna-
tive l (see Eq. (1)).

NPV lð Þ ¼ −
Xτ3
τ¼0

Cdev τð Þ
1þ rð Þτ

�����
l

−
Xτprod
τ¼0

Cinvest τð Þ
1þ rð Þτ

�����l

þ
Xτprod
τ¼τlau

Csales τð Þ−Cop τð Þ
1þ rð Þτ j

l

;

ð1Þ

where Cdev(τ) [$ yr− 1], Cinvest(τ) [$ yr− 1], Csales(τ) [$ yr− 1],
Cop(τ) [$ yr− 1], and r [−] (dimensionless) represent the de-
velopment cost, investment cost, sales, and operating cost
in τ years after the decision stage, and the interest rate, re-
spectively. The parameters τj [yr], τinv [yr], τlau [yr], and
τprod [yr] represent the periods from the decision stage to
the clinical trials at phase j (phase III in Eq. (1)), the
investment in production facilities (e.g., the continu-
ous manufacturing machine), the product launch, and
the end of the commercial production, respectively.
This indicator was extended from the conventional
NPV [36] by considering the cash flow in the drug
lifecycle, in particular, the development cost Cdev. For
the operating cost, Cop(τ), the existing economic
evaluation model proposed by our group [22] was
used. In case continuous technology is considered as
the alternative, an optimization algorithm is run to
specify the validated run time to maximize the third
term in Eq. (1) (see [22] for details).
The design problem can be expressed as shown in Eq.

(2):

Table 2 Description of the general units

General unit ID Description

U1 Size reduction

U2 Spray drying

U3 Size reduction

U4 Size reduction

U5 Size reduction

U6 Dissolving

U7 Size reduction

U8 Mixing

U9 Roller compaction

U10 Wet granulation without drying
(e.g., high-shear granulation)

U11 Wet granulation and drying
(e.g., fluidized-bed granulation)

U12 Drying

U13 Milling

U14 Blending

U15 Compression

U16 Coating

U17 Encapsulation

U18 Packaging

Fig. 2 Overview of cash flow in the drug lifecycle with indication of the decision stage considered in the study
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max EθðNPV ðlÞÞ
s:t:

EθðNPV ðlÞÞ > 0

ðMass balance constraintsÞ
ðProcessing time constraintsÞ
ðPharma−speci fic constraintsÞ

ð2Þ

where the objective function is the expected value of
NPV, the design variable is alternative l, and the param-
eter θ represents the vector of uncertainty parameters.
The first constraint serves as the rejection criterion for an
alternative. The second, third, and fourth constraints con-
sider the mass balance of raw materials and products/
losses, time-related constraints, e.g., the validated run time
for continuous technology, and pharma-specific aspects,
e.g., safety stock, respectively (see [22] for the details).
An additional mechanism was defined for investigating

the superiority of one alternative over another. Eq. (3)
defines the differences in NPV between alternatives l1
and l2, ΔNPV l1;l2 [$].

ΔNPV l1;l2 ¼ NPV l1ð Þ � NPV l2ð Þ ð3Þ

The area of ΔNPV l1;l2 > 0 provides the probability that
alternative l1 becomes preferable to l2.

Details of economic assessment
The indicator shown in Eq. (1) distinguishes between
the following three development-related tasks: develop-
ment of formulation and process, scale-up study, and
production of clinical investigational drugs. In the for-
mulation and process development, the type of additives
and process parameters are usually determined using
small-scale equipment. Scale-up studies are then con-
ducted with larger equipment. In the case of continuous
technology, the ease of scale-up becomes advantageous.
Finally, clinical investigational drugs are produced using
the determined formulation and processes, to fulfill the
required amount given by clinical-trial examiners. Based
on these considerations, the development cost, Cdev(τj),
was defined as shown in Eq. (4).

Cdev τ j
� � ¼ Material costþ Labor cost

¼ C j
material;process þ C j

material;scale þ C j
material;clinical

� �

þ C j
labor;process þ C j

labor;scale þ C j
labor;clinical

� �
:

ð4Þ

The parameters C j
material;process [$ yr−1], C j

material;scale [$

yr− 1], C j
material;clinical [$ yr− 1], C j

labor;process [$ yr− 1],

C j
labor;scale [$ yr− 1], and C j

labor;clinical [$ yr− 1] represent the

material and labor costs for formulation and process de-
velopment, scale-up study, and investigational drug pro-
duction in phase j, respectively. The characteristics of
the alternative are reflected in this equation, e.g., a credit
for scale-up-free nature can be given when continuous
technology is adopted.
The sales, Csales(τ), was formulated as shown in Eq.

(5):

Csales τð Þ ¼
X
h

Ch
drugN

h
demand τð Þ; ð5Þ

where Ch
drug [$ (dosage unit)− 1] and Nh

demandðτÞ [(dos-

age unit) yr− 1] represent the selling price and the de-
mand amount of the product with formulation h,
respectively.
The operating cost, Cop(τ), was defined on the basis of

our previous work [22] as:

CopðτÞ ¼ Material cost þ Disposal costþ Labor costþ Utility cost

þCapacity cost ¼ f
X
k

Cmaterial;kðMproduct;kðτÞ þMloss;kðτÞÞ
þCmaterial;solventMsolventðτÞ þ CtestðτÞg þ Cdisposal

X
k

Mloss;kðτÞ
þClaborðWmanu facturingðτÞ þW cleaningðτÞ þW testingðτÞ
þW PATðτÞÞ þ CHVACATHVACðτÞ þ CcapacityðτÞ:

ð6Þ
The parameters Cmaterial, k [$ kg− 1], Cmaterial, solvent [$

kg− 1], Ctest(τ) [$ yr− 1], Mproduct, k(τ) [kg yr
− 1], Mloss, k (τ)

[kg yr− 1], and Msolvent(τ) [kg yr
− 1] represent the cost of

raw material k, the raw material cost of solvent, the cost
of materials for testing, the annual amount of material k
used to make the product, amount of annual losses of
material k, and amount of solvent used annually, re-
spectively. Examples of losses are sampling, sticking, or
discards during start-up. A solvent is used to dissolve
the binder or coating agent, and water is used typically.
The parameter Cdisposal [$ kg− 1] represents the cost to
dispose of a unit amount of loss, which was assumed to
be independent of the type of materials. The parameter
Clabor [$ person− 1 h− 1] is the labor rate and the parame-
ters Wmanufacturing(τ) [person h yr− 1], Wcleaning(τ) [person
h yr− 1], Wtesting(τ) [person h yr− 1], and WPAT(τ) [person
h yr− 1] represent the annual person-hours for manufac-
turing, cleaning, testing, and for process analytical tech-
nology (PAT) maintenance, respectively. The parameters
CHVAC [$ m− 2 h− 1], A [m2], THVAC(τ) [h yr

− 1] represent
the heating, ventilation, and air conditioning (HVAC)
cost, manufacturing area that is covered by HVAC, and
HVAC running time, respectively. The parameter Ccapaci-

ty(τ) [$ yr− 1] represents capacity cost, i.e., the loss of
profits from capacity displaced by the new product as an
additional operating cost. The original model in [22] was
only for comparing the batch and continuous
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technologies; in this work, we extended the model to as-
sess all possible process alternatives. Solid drug product
manufacturing is a linear process without recycling, and
thus the mass balance is simple. The term (Mproduct,

k(τ) +Mloss, k (τ)) corresponds to the amount of raw ma-
terial. The solvent (typically water) is dried during the
process, and thus the term Msolvent(τ) is not included in
the mass balance. In the calculation Mloss, k (τ) can be
specified according to our previous paper [22] with the
values provided by the industrial coauthors.

MCS
MCS can quantify various types of uncertainty in clinical
development and commercial production by defining the
probability density function (PDF) of the input parameters.
In the decision stage, i.e., the beginning of phase II, the pa-
rameters in the abovementioned models are still open.
Moreover, the success of the drug is uncertain. We defined
the uncertainty parameters that are subject to a global sen-
sitivity analysis (see Table 3). Normally, the variables such
as continuous manufacturing rate and start-up operation
time can be determined at later development stages
through experimental investigations. These variables were
classified as internal variables. The variables such as de-
mand amount and success/failure of clinical development
are given as external constraints, also at later stages.
In this work, we used a triangular distribution as the

PDF for the parameters with ranges/multiple values, which
specifies a distribution with the minimum, maximum, and
peak values of parameters. The choice of the distribution

Table 3 Overview of the uncertainty parameters

Category Type of variable Number of parameters
used in the case study

Internal variables determined at later stages

Dosage unit size and composition Continuous 9

Number of PATs installed Continuous 2

Manufacturing space Continuous 2

Manufacturing rate in continuous technology Continuous 1

Time related to production, cleaning, and test Continuous 19

Losses Continuous 11

Number of operators Discrete 21

Number of lots in one campaign manufacturing Discrete 2

External variables given at later stages

Raw material price Continuous 7

Demand/required amount Discrete 6

Man-hours of work in the maintenance of PAT per one PAT Continuous 1

Disposal/HVAC cost Continuous 2

Drug price Continuous 1

Success/failure of clinical development Categorical 1

Fig. 3 Workflow for applying the developed mechanisms
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was because (i) the triangular distribution can be asymmet-
ric, (ii) the upper and lower ends can be specified, and
most importantly, (iii) the distribution can be specified
with the information available in phase II.
For the continuous variables such as the manufactur-

ing rate, the PDF f1(x) was defined as shown in Eq. (7).

f 1 xð Þ ¼

2 x� xminð Þ
xmax � xminð Þ xstd � xminð Þ xmin≤x≤xstdj

2 xmax � xð Þ
xmax � xminð Þ xmax � xstdð Þ xstd≤x≤xmaxj

0 x < xmin; x > xmaxj

;

8>>>><
>>>>:

ð7Þ

where xmin, xmax, and xstd represent the minimum,
maximum, and standard (i.e., peak) values of an input
parameter, respectively. For integer variables such as the
number of operators, a discrete triangular distribution
[37], f2(x), was used, (Eq. (8)). For the interval of the
discrete parameters, the unit value was used.

f 2 xð Þ ¼

2 x� xmin þ 1ð Þ
xmax � xmin þ 2ð Þ xstd � xmin þ 1ð Þ xmin≤x≤xstdj

2 xmax � xþ 1ð Þ
xmax � xmin þ 2ð Þ xmax � xstd þ 1ð Þ xstd≤x≤xmaxj

0 x < xmin; x > xmaxj

8>>>><
>>>>:

ð8Þ

Regarding the success or failure of the product launch,
which is a categorical variable, the discrete (not neces-
sarily triangular) distribution f3(xsuccess) was formulated
as Eq. (9).

f 3 xsuccessð Þ ¼
p2 xsuccess ¼ 0j
p3 xsuccess ¼ 1j

1� p2 � p3 xsuccess ¼ 2j
;

8<
: ð9Þ

where p2 [−] and p3 [−] represent the probability that
clinical development fails at phases II and III, respect-
ively. The parameter xsuccess [−] represents the status of
the clinical development, which consists of 0 (develop-
ment fails at phase II), 1 (development fails at phase III),
and 2 (development is successful, followed by product
launch).
An MCS can be run using the defined distributions. In

this study, the iteration was set as 10,000 and Latin
hypercube sampling (LHS) [38] was used as the sam-
pling method. In one iteration, a set of values between 0
and 1, pLHS, was generated for all parameters of all alter-
natives, which were then converted to a set of actual
parameter values, xsample, using the inverse cumulative
distribution functions. The relationship between xsample

and pLHS, can be formulated as Eq. (10).

pLHS ¼
R xsample

�∞ f xð ÞdxR∞
�∞ f xð Þdx ð10Þ

Global sensitivity analysis
Global sensitivity analysis can identify critical parameters
for decision-making. We used the Spearman rank correl-
ation coefficient (RCC), ρx [−] [39, 40] (Eq. (11)), as
follows.

Table 4 Values of the parameters varied in scenarios

Scenario 1 Scenario 2

xstd xmin xmax xstd xmin xmax

API price in commercial production [$ kg−1] 1.00 × 103 8.00 × 102 1.50 × 103 4.50 × 104 3.60 × 104 6.75 × 104

Peak demand amount (main dose/low dose) [tablet yr− 1] 6.00 × 107

/1.50 × 107
5.00 × 107

/1.25 × 107
7.00 × 107

/1.75 × 107
3.00 × 108

/7.50 × 107
2.50 × 108

/6.25 × 107
3.50 × 108

/8.75 × 107

Table 5 Standard values of tablet weight and composition ratio applied to scenarios

Main dose Low dose (proportional) Low dose (common)

Tablet weight [kg tablet−1] 3.0 × 10−4 6.0 × 10−5 3.0 × 10−4

Composition ratio [−]

API 0.30 0.30 0.060

Excipient 0.56 0.56 0.80

Disintegrant 0.10 0.10 0.10

Binder 0.015 0.015 0.015

Lubricant 0.0050 0.0050 0.0050

Coating agent 0.020 0.020 0.020
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ρx ¼ 1� 6
P

d2

N N2 � 1
� � ð11Þ

where N [−] and d [−] represent the iteration number
and the difference between the ranks of the parameters
x and ΔNPV l1;l2 , respectively. In this work, the value of
ρx was set as 0, in the case where the p-value for ρx was
greater than 0.05. For the parameters associated with

commercial production, the results of the iterations in
which xsuccess = 2 were extracted from the 10,000 data-
sets and were used in the sensitivity analysis. For the
critical parameters, a what-if analysis was performed by
changing the PDF to judge whether these parameters
would affect the decision. The significance of the differ-
ence of ΔNPV l1;l2 was confirmed by the Kolmogorov–
Smirnov test [41, 42] by randomly sampling 100 data

Table 6 Overview of the generated alternatives

Alternative number Combination of the general units in Fig. 1 Technology Formulation strategy

1 UC
10, U

C
12, U13, U

C
14, U15, U

C
16, U18 Continuous Proportional

2 UC
10, U

C
12, U13, U

C
14, U15, U

C
16, U18 Continuous Common

3 UB
10, U

B
12, U13, U

B
14, U15, U

B
16, U18 Batch (high-shear) Proportional

4 UB
10, U

B
12, U13, U

B
14, U15, U

B
16, U18 Batch (high-shear) Common

5 UB
11, U13, U

B
14, U15, U

B
16, U18 Batch (fluidized-bed) Proportional

6 UB
11, U13, U

B
14, U15, U

B
16, U18 Batch (fluidized-bed) Common

Table 7 Lot size and amount of materials used in clinical development

Phase Main/low dose Technology Lot size Quantity

Formulation and process development (formulation) II & III Main Batch and
continuous

1 kg lot−1 30 lots

Formulation and process development (formulation) II & III Low (proportional) Batch and
continuous

– 0

Formulation and process development (formulation) II & III Low (common) Batch and
continuous

1 kg lot−1 30 lots

Formulation and process development (pre-scale-
up)

II & III Main Batch and
continuous

5 kg lot−1 4 lots

Formulation and process development (pre-scale-
up)

II & III Low (proportional) Batch and
continuous

– 0

Formulation and process development (pre-scale-
up)

II & III Low (common) Batch and
continuous

5 kg lot−1 4 lots

Scale-up study II Main Batch 30 kg lot−1 4 lots

Scale-up study II Low (proportional) Batch 30 kg lot−1 2 lots

Scale-up study II Low (common) Batch 30 kg lot−1 4 lots

Scale-up study III Main Batch 100 kg
lot−1

4 lots

Scale-up study III Low (proportional) Batch 100 kg
lot−1

2 lots

Scale-up study III Low (common) Batch 100 kg
lot−1

4 lots

Scale-up study II & III Both Continuous –

Investigational drug production II Main Batch and
continuous

30 kg lot−1 2.0 × 105

tabletsa

Investigational drug production II Low (proportional and
common)

Batch and
continuous

30 kg lot−1 5.0 × 104

tabletsa

Investigational drug production III Main Batch and
continuous

100 kg
lot−1

8.0 × 105

tabletsa

Investigational drug production III Low (proportional and
common)

Batch and
continuous

100 kg
lot−1

2.0 × 105

tabletsa

aThe quantity shown in the table is the standard value of the expected required quantity of tablets for clinical trials. In addition, the same amount of placebo is
produced for the main and low doses in proportional dosage. For the low dose in common dosage, additional production of placebo is not required because the
tablet size is the same as the main dose

Matsunami et al. BMC Chemical Engineering             (2020) 2:6 Page 8 of 16



from the distributions before and after changing the crit-
ical parameter [43].

Workflow for general application
Figure 3 presents the workflow for the general application
of the mechanisms presented above. In Step 1, alternatives
are generated using the superstructure, followed by the spe-
cification of the PDFs for the input parameters in Step 2. In
Step 3, each alternative is assessed using the NPV (see Eq.
1), to identify the optimal one (see Eq. 2). The probability
of the superiority of the latter to other alternatives (see Eq.
3) is also obtained. If the superiority of the optimal alterna-
tive needs to be investigated further (Q1), Steps 2 and 3 are
repeated, particularly the sensitivity and what-if analyses. If
the obtained information/understanding is sufficient for the
final decision (Q2), the analysis can be concluded.

Results and discussion
Scenario setting
To confirm its effectiveness and to obtain practical in-
sights, the presented method was demonstrated in two
scenarios. Scenario 1 was the case in which the API was

inexpensive and the product demand was small, whereas,
in Scenario 2, an expensive API and large demand were
assumed (see Table 4). The decision stage was the begin-
ning of phase II (see Fig. 2). It was assumed that two
doses of tablets with high and low API contents were re-
quired, with defining the former as “main dose” and the
latter as “low dose.” As Step 1 of the workflow (see
Fig. 3), we focused on wet granulation and generated
three process alternatives (the blue highlights in Fig. 1).
In addition, the choice of formulation strategy, i.e., pro-
portional and common dosages, was considered (see
Table 5). The overview of the six generated alternatives
is presented in Table 6. The alternatives 1 and 2 repre-
sent the continuous technology with proportional and
common dosages, respectively. For batch technology,
high-shear granulation was assumed for alternatives 3
and 4, and fluidized-bed granulation for alternatives 5
and 6. The low-dose formulation was changed depend-
ing on the strategy of proportional or common dosages
while the formulation of the main dose was fixed.
For Step 2, the input parameters, except for the de-

mand amount and the API price, were defined as the

Fig. 4 Results of ΔNPVa, 1 in Scenario 1

Fig. 5 RCC of ΔNPV5, 1 in Scenario 1
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same in both scenarios. The expert knowledge of the in-
dustrial coauthors was extensively used in determining
the input parameters. The values associated with Cop

were defined as in the previous study by this group [22].
We assumed that (i) there is a facility that is equipped
with all three process alternatives, and (ii) the capacity
of the facility is sufficient, i.e., Cinvestment = 0 and Ccapaci-

ty(τ) = 0. The uncertainties in the parameters related to
Cdev were neglected, except for the uncertainty in the re-
quired quantity of clinical investigational drugs. A total
of 85 uncertainty parameters was considered in both
(see Table 3). The lot size and the material amount used
in clinical development, which are the key input parame-
ters for Cdevelop, are presented in Table 7. The probabil-
ity that clinical development fails was also assumed,
where p2 and p3 were 0.1 and 0.3, respectively.
The results of Step 3 and the investigations on Q1 and

Q2 are presented in the workflows for each scenario in
Fig. 3. All the investigated alternatives fulfilled the first
constraint of Eθ(NPV(l)) > 0 in Eq. (2).

Scenario 1: inexpensive API and small demand
The evaluation result of ΔNPVa, 1 in Scenario 1 is pre-
sented in Fig. 4. Alternative 1 (continuous technology and
proportional dosage) was determined as the solution of
the design problem (Eq. 2). The alternatives using con-
tinuous technology (alternatives 1 and 2) were more bene-
ficial than those using batch technology (alternatives 3–6)
regarding the mean. The continuous technology option
required less development and operating costs because it
needed less scale-up study as well as fewer operators and
less manufacturing space. Proportional dosage (alterna-
tives 1, 3, and 5) was more beneficial than a common dos-
age (alternatives 2, 4, and 6). The proportional dosage
saved the mass of additives used in particular in the com-
mercial production because the tablet size of the low dose
was smaller in the proportional than in the common dos-
age. The difference between batch high-shear granulation
(alternatives 3 and 4) and fluidized-bed granulation

(alternatives 5 and 6) was because it was assumed that the
high-shear granulation required less manufacturing space
than fluidized-bed granulation. Overall, the decisions on
whether to use “continuous or batch” and “proportional
or common” were found to be more sensitive than those
on “high-shear or fluidized-bed.” Among the alternatives
other than 1, alternative 5 had the highest possibility of
ΔNPVa, 1 > 0 (23.0%). Thus, as an action for Q1, we inves-
tigated the superiority of alternative 1 over alternative 5.
The result of the sensitivity analysis on ΔNPV5, 1, where

the top five sensitive parameters are displayed among the
85 parameters is presented in Fig. 5 (see Additional file 1
for more results). The manufacturing rate in continuous
technology, v, was the most influential. Besides, many of
the significant parameters were related to labor, and the
parameters related to raw materials were not sensitive.
Based on the sensitivity analysis, a what-if analysis was

performed on ΔNPV5, 1 by reducing the manufacturing
rate, v. The varied parameters are shown in Table 8, and
the new result of ΔNPVa, 1 is shown in Fig. 6. When v was

Table 8 Values of the parameters varied in what-if analyses

Original value (left in Figs. 6 and 9) Value used in what-if analysis

xstd xmin xmax

Scenario 1 (Fig. 6)

Manufacturing rate in continuous technology v [kg h− 1] 25 10 25 19 (middle)
15 (right)

Scenario 2 (Fig. 9)

Manufacturing rate in continuous technology v [kg h− 1] 25 10 25 25 (middle & right)

Loss amount due to shut-down operation mcontinuous
loss;shut [kg lot−1] 5.00 1.00 20.0 2.50 (right)

Loss amount due to start-up operation mcontinuous
loss;start [kg lot−1] 12.5 1.00 20.0 6.25 (right)

Fig. 6 What-if analysis in Scenario 1 with varying the manufacturing
rate from the original (left) to 19 kg h− 1 (middle) and to
15 kg h− 1 (right)
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19 kg h− 1, the mean of ΔNPV5, 1 was nearly zero, and the
probability of ΔNPV5, 1 > 0 was 35.2%. A significant
change in the distribution of ΔNPV5, 1 was confirmed (the
p-value for the Kolmogorov–Smirnov test was 5.00 × 10−
3). When v was reduced to 15 kg h− 1, alternative 1 became
inferior to alternative 5 regarding the mean, and the prob-
ability of ΔNPV5, 1 > 0 was 53.2%. The result showed again
a significant change in ΔNPV5, 1 (the p-value was 9.24 ×
10− 5). Thus, to make the final decision on alternative 1
(Q2), the process characteristic for achieving high-speed
manufacturing, e.g., the flowability of the materials, needs
to be well understood.

Scenario 2: expensive API and large demand
The evaluation result of ΔNPVa, 6 in Scenario 2 is summa-
rized in Fig. 7. Alternative 6 (batch technology, fluidized-
bed granulation, and common dosage) showed the highest
mean, and thus was determined as the solution for the de-
sign problem (Eq. 2). In contrast to Scenario 1, batch tech-
nology (alternatives 3–6) was better than continuous
technology (alternatives 1 and 2) regarding the mean. In
this study, the yield of continuous technology was assumed

to be lower than that of batch technology [23]; therefore,
the superiority of continuous technology decreased with
increasing API price. The choice between continuous and
batch largely affected the distributions because both tech-
nologies had many independent parameters related to ma-
terial cost that were sensitive in Scenario 2. The common
dosage (alternatives 2, 4, and 6) was better than the pro-
portional dosage (alternatives 1, 3, and 5) this time. Adopt-
ing common dosage reduces the API weight percent in a
low-dose formulation (see Table 5), which reduced the loss
of expensive API in particular in the scale-up study and
during investigational drug product manufacturing. Conse-
quently, a common dosage became more economical, even
though the input parameters were specified in such a way
that common dosage required more experimental lots than
proportional dosage (see Table 7). The superiority of
fluidized-bed granulation to batch high-shear granulation
remained the same as in Scenario 1. Alternative 2 showed
42.9% as the possibility of ΔNPVa, 6 > 0, which was the
highest among the other alternatives. This result led us to
compare alternatives 2 and 6 further regarding the super-
iority, as an action to Q1.

Fig. 7 Results of ΔNPVa, 6 in Scenario 2

Fig. 8 RCC of ΔNPV2, 6 in Scenario 2
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The sensitivity analysis of ΔNPV2, 6 in Scenario 2 is
shown in Fig. 8 (see Additional file 1 for the detailed re-
sults). The RCC of the most influential parameter, which
was the status of clinical development, was negative, i.e.,
if the development fails, continuous becomes lucrative.

This is because continuous was better than batch in
terms of Cdev, the tendency was the opposite in Cop, and
the impact of these values (summed over years) was
huge. The possibility of ΔNPV2, 6 > 0 was mostly due to
the possibility of clinical development failure, which is
not controllable in process design. Among the parame-
ters in commercial production, material-related parame-
ters were relevant, indicating the impact of the high API
price assumed in Scenario 2.
A what-if analysis was performed on the sensitive pa-

rameters for ΔNPV2, 6 (see Table 8 and Fig. 9). First, the
manufacturing rate, v, which was originally distributed
(see Table 8), was fixed at 25 kg h− 1—the fastest, and
thus most advantageous, condition for continuous tech-
nology. The distribution of ΔNPV2, 6 did not change sig-
nificantly (the p-value was 0.677), and the probability of
ΔNPV2, 6 > 0 increased from 42.9 to 48.5% (Fig. 9). Then,
the sum of losses due to shut-down and start-up opera-
tions, mcontinuous

loss;shut and mcontinuous
loss;start , was reduced to half

(8.75 kg lot− 1) of the original standard value (17.5 kg
lot− 1, see Table 8). This time, a significant change in
ΔNPV2, 6 (the p-value was 5.70 × 10− 10) was observed
from the previous analysis (Fig. 9). The probability of
ΔNPV2, 6 > 0 increased to 90.9%, and the mean was posi-
tive, indicating that alternative 6 became inferior to al-
ternative 2. To conclude, alternative 6 (batch fluidized
bed, proportional) can be selected in Scenario 2.

Fig. 9 What-if analysis in Scenario 2 with varying the manufacturing
rate (middle and right) and loss amount (right) from the
original (left)

Fig. 10 Prototype of “SoliDecision”
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However, for alternative 2 it is highly likely to be super-
ior in the event of clinical development failure, and
when high-speed manufacturing with rapid start-up and
shut-down is possible. These points need to be under-
stood to make the final decision on alternative 2 (Q2).

Software tool “SoliDecision”
Efforts are currently being made for implementing the
presented method as a software named “SoliDecision” (a
combination of “solid” and “decision.”) A prototype ver-
sion was written in MATLAB R2019a (The MathWorks,
Inc., Natick, MA, US) and was compiled as an executable
(.exe) file using MATLAB App Designer. The compiled
exe file constitutes a standalone desktop application that
can be run without the MATLAB software environment.
A graphical user interface of the prototype is shown in
Fig. 10 (a version as of December 22, 2019) (see also Add-
itional file 1). For the calculation of probabilities of NPV
for six alternatives, it took 174 s using Intel® Core™ i7-
8550U CPU @ 1.80GHz with 16.0 GB RAM memory.
The prototype can reproduce the results presented above
by following the steps of alternative generation, input par-
ameter specification, and stochastic economic assessment.
Some of the parameters, e.g., API price, can be varied. In
the future, a full-licensed version will be developed where
the users have the right to simulate various situations with
freely varying the input parameters. The prototype (status
December 22, 2019) will be available upon reasonable re-
quest to the corresponding author.

Conclusions and outlook
A new method for process synthesis and economic as-
sessment for solid drug product manufacturing, consid-
ering continuous manufacturing as the prominent
process alternative was presented. The method targeted
the beginning of phase II as the decision stage. A super-
structure was developed that covered 9452 options at
the unit level, which was combined with two formula-
tion strategy options. To assess the generated alternative,
an MCS-based model was defined for calculating the
NPV and for global sensitivity analysis. The workflow
was demonstrated in a case study where two different
scenarios regarding API price and demand were as-
sumed. A practical finding was obtained that, when the
demand and price are both low, the labor-related costs
are dominant, and in the opposite case, the material-
related costs become relevant. We also introduced the
prototype version of the software “SoliDecision” that im-
plemented the presented method for industrial applica-
tion. The work highlighted the importance of developing
new approaches to move away from the conventional
empirical methodologies to a systematic and compre-
hensive development of optimal solutions. In the future,

integration of other decision aspects, such as quality,
could be pursued, toward multiobjective decision-
making in drug development and manufacturing.

Nomenclature

Variables
A Manufacturing area covered by HVAC [m2].
Ccapacity(τ) Annual capacity cost [$ yr− 1].
Cdev(τ) Development cost in τ years after the decision
stage [$ yr− 1].
Cdisposal Cost to dispose of a unit amount of loss [$ kg−
1].
Ch

drug Selling price of drugs of formulation h [$ (dosage

unit)− 1].
CHVAC HVAC cost [$ m− 2 h− 1].
Cinvest Investment cost [$ yr− 1].
Clabor Labor rate [$ person− 1 h− 1].

C j
labor;clinical Labor cost of investigational drug production

in phase j [$ yr− 1].

C j
labor;process Labor cost of formulation and process devel-

opment in phase j [$ yr− 1].

C j
labor;scale Labor cost of scale-up study in phase j [$ yr−

1].

C j
material;clinical Material cost of investigational drug pro-

duction in phase j [$ yr− 1].
Cmaterial, k Cost of raw material k [$ kg− 1].

C j
material;process Material cost of formulation and process

development in phase j [$ yr− 1].

C j
material;scale Material cost of scale-up study in phase j [$

yr− 1].
Cmaterial, solvent Cost of solvent [$ kg− 1].
Cop(τ) Operating cost in τ years after the decision stage
[$ yr− 1].
Csales(τ) Sales in τ years after the decision stage [$ yr− 1].
Ctest(τ) Cost of materials for testing [$ yr− 1].
d Difference between the ranks of x and ΔNPV l1;l2 [−].
mh Product weight for the formulation h [kg (dosage
unit)− 1].
Mloss, k (τ) Loss amount of material k [kg yr− 1].
mloss, comp Loss amount caused by compression testing
in compression [kg lot− 1].
mcontinuous

loss;feeder Loss amount remaining in the feeder in con-

tinuous technology [kg campaign− 1].
mtech

loss;sample;u Loss amount caused by sampling in unit u

in technology tech [kg lot− 1].
mcontinuous

loss;shut Loss amount due to shut-down operation in

continuous technology [kg lot− 1].
mcontinuous

loss;start Loss amount due to start-up operation in

continuous technology [kg lot− 1].
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mtech
loss;stick;u Loss amount caused by sticking in unit u [kg

campaign− 1].
Mproduct, k(τ) Annual amount of material k used to make
the product [kg yr− 1].
Msolvent(τ) Annual amount of solvent used [kg yr− 1].
N Number of iterations (dataset) [−].
Ntech

campaign Number of lots in one campaign manufactur-

ing in technology tech [lot campaign− 1].
Nh

demandðτÞ Demand amount in τ years after the decision
stage of formulation h [(dosage unit) yr− 1].

N max;h
demand Peak demand amount for formulation h [(dos-

age unit) yr− 1].
ntechp−cleaning Number of operators in cleaning in technology

tech [person].
ntechp�u Number of operators in unit u in technology tech

[person].
NPV Net present value [$].
pLHS Value sampled based on LHS [−].
p2 Probability that the clinical development fails at phase
II [−].
p3 Probability that the clinical development fails at phase
III [−].
r Interest rate [−].
ttechcampaign Total time needed for one campaign manufac-

turing in technology tech [h campaign− 1].
Ttech

cleaning Required work time of cleaning in technology

tech [h campaign− 1].
THVAC(τ) HVAC running time [h yr− 1].
Tpass Required time for passing through all units in con-
tinuous technology [h].
Ttech

u Required work time of unit u in technology tech [h
lot− 1].
v Manufacturing rate in continuous technology [kg h− 1].
Wcleaning(τ) Annual person-hours for cleaning [person h
yr− 1].
Wmanufacturing(τ) Annual person-hours for manufacturing
[person h yr− 1].
WPAT(τ) Annual person-hours for PAT maintenance
[person h yr− 1].
Wtesting(τ) Annual person-hours for testing [person h
yr− 1].
xmax Maximum value of input parameter x.
xmin Minimum value of input parameter x
xsample Value used for MCS
xstd Standard value of input parameter x
xsuccess Status of clinical development [−]
αhk Composition ratio of material k in the product of for-
mulation h [−]
ΔNPV l1;l2 Difference of NPV between alternatives l1 and
l2 [$]
ρx Spearman RCC for parameter x [−]

τ Time period after the decision stage [yr]
τinv Time period from the decision stage to the invest-
ment [yr]
τj Time period from the decision stage to the clinical tri-
als at phase j [yr]
τlau Time period from the decision stage to the product
launch [yr]
τprod Time period from the decision stage to the end of
commercial production [yr]
Functions
f1 PDF for continuous variables
f2 PDF for integer variables
f3 PDF for categorical variables
Suffixes
a, l, l1, l2 Alternatives [−]
h Dose (main, low) [−]
j Clinical phase [−]
k Material [−]
u Manufacturing unit (gran, blend, com, coat) [−]
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1186/s42480-020-0028-2.

Additional file 1. . This file presents calculation of the number of
alternatives in a superstructure, details about the case study, and the
contents of “SoliDecision.”
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