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Abstract

introduce some possible new directions.

As future energy systems aim to be more efficient, cost-effective, environmentally benign, and interconnected with
each other, their design and operation become ever challenging tasks for decision-makers, engineers, and scientists.
Sustainability of life on earth will be heavily affected by the improvements of these complex energy systems.
Therefore, experts from various fields need to come together to find common solution strategies. However, since
different technologies are usually developed separately by their own technical community, a generally accepted
unified systematic approach to tackle integrated systems is lacking. With this article, we want to introduce and
highlight the power of energy systems engineering as a generic framework to arrive at synergistic solutions to
complex energy and environmental problems. Tools of energy systems engineering are numerous, and its application
areas cover a wide range of energy systems. In this commentary, we present an overview of state-of-the-art
methodologies of energy systems engineering, list its applications and describe few examples in detail, and finally
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Motivation
With the growth in world economy and population, the
global energy demand is projected to rise from 570 exa-
joules in 2015 to 1000 exajoules by 2070 [1, 2]. As a
result, the energy availability and usage will continue to
be key challenges our society faces. Today’s heavily fossil
fuel-based energy supply chain has developed successfully
over decades to produce reliable, available, and affordable
energy to various industries and sectors. Unfortunately,
this dependence on fossil resources results in the release
of large amounts of greenhouse gas (GHG) emissions
that affect the environment and accelerate climate change
[3, 4]. Meeting the increasing energy demand, while
reducing GHG emissions, will arguably be one of the
biggest challenges for 21 century engineers, scientists,
economists, and policy makers.

Energy production, conversion, and delivery systems of
the future should not only help us meet the increasing
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energy demand and be economically feasible, but also (i)
reduce GHG emissions and environmental pollution, (ii)
increase energy savings while using less resources, and (iii)
shift from fossil fuel-based technologies to larger shares of
renewable resources [5-7]. These concerns prevail in var-
ious energy sectors such as power & electricity generation,
transportation, heavy industry, and residential & com-
mercial [8]. Additionally, operation of one sector affects
the others since all these energy systems are to some
degree connected [9]. In the past, each of these energy sys-
tems have been treated separately by their own technical
community or political groups; however, holistic solution
strategies are becoming more popular recently due to the
possibility of exploiting the similarities, interconnections,
and synergies between different energy systems [10].

As the integrated systems grow in complexity, a tradi-
tional method for energy systems design such as using
heuristics that rely on rules of thumb become less use-
ful to a decision-maker. While heuristics combined with
experience can generate quick solutions that are often
reasonably good, it does not provide a way to estab-
lish the quality of the solution. Furthermore, conflicting
objectives or comparison of alternatives in a problem
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might require arbitrary decisions. As an alternative, high-
efficiency targeting approaches that focus on reaching
thermodynamic limits can reduce energy consumption,
but most of the time ignore capital cost considerations.
They might also require considerable insight and trial
& error [11, 12]. In contrast to these two approaches,
mathematical optimization-based methods that rely on
algorithms and simultaneous consideration of physics,
chemistry, biology, and economics in a system have
proven themselves as promising tools to help decision-
makers generate design and operational strategies for
integrated systems. Previously mentioned approaches can
find good and near optimal solutions to a difficult
problem. On the other hand, an optimization approach
aims to find the best possible solution to the problem
by quantifying the “goodness” of solutions. Optimiza-
tion methods thrive when tackling systems with high
degrees of freedom. Since integration means an increase
in the degrees of the freedom, this translates into big-
ger room for improvement for energy systems. Rigorous
optimization methods do not rely on trial & error;
instead, they are build on systematic solution strategies
[13, 14].

Energy systems engineering [15] methods aim to pro-
vide a generic framework to arrive at realistic integrated
solutions to complex energy and environmental problems.
Energy systems engineering puts mathematical optimiza-
tion at its core to make systematic and quantitative analy-
sis of design and operational decisions for energy systems
ranging from nanoscale to megascale levels over time
horizons that range from milliseconds to months or years
[10, 16]. Energy systems engineering has been success-
fully applied to optimizing design and operation in various
sectors such as fuels and chemicals production and dis-
tribution [17-22], conventional and unconventional oil
production [23-26], biofuels and biorefineries [27-29],
and urban energy systems [30—33].

In this commentary, we aim to introduce some key
methodologies of energy systems engineering to show
the versatility and resourcefulness of its tools. Then, we
present some representative case studies highlighting the
application of these methodologies into energy systems
of different scales. Finally, we will briefly comment on a
few directions that will be explored more rigorously in the
upcoming years.

Methodologies of energy systems engineering

The primary aims of energy systems engineering are the
design and operation of energy intensive processes in
a more efficient and economic manner through math-
ematical optimization. In this section, we present some
of the important tools used in energy systems engi-
neering. Figure 1 summarizes the concepts discussed
below.
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Mathematical modeling

Before we discuss the design and operation of energy sys-
tems, we first briefly mention how the equations describ-
ing energy systems (i.e. the constraints for optimization
problems) are developed. Approaches for modeling
energy systems [34] are: (1) first-principles, (2) data-
driven, and (3) hybrid. First-principles modeling, also
referred to as white-box, is using theory and mecha-
nistic insights to derive the mathematical equations like
mass, momentum, and energy balances that govern the
energy system [35, 36]. A complete physical understand-
ing of the energy system is presumed. On the other
hand, data-driven or black-box models assume no phys-
ical insights and construct mathematical relationships
solely based upon historical data from the energy sys-
tem. Data-driven modeling is effective when a mecha-
nistic understanding of the energy system is either not
achievable or computationally too expensive. These data-
inspired surrogate models include regression, classifica-
tion, interpolation, or artificial neural network techniques
[37-39].

Incorporating concepts from both methods, hybrid or
grey-box modeling is using theory and data to build a
mathematical representation of the energy system. Some
physical understanding is presumed; data is utilized to
guide and adjust the first-principles equations in areas
where there is a lack of insight [40—42]. Hybrid models
are increasingly becoming a mainstay in energy systems
engineering as energy systems grow more complex and
pure theoretical approaches are not sufficient [43, 44],
especially in applications such as renewable energy
infrastructural design [45] and refinery manufacturing
operations [46].

Optimal design

In the process systems engineering (PSE) community
[47], design of energy systems is traditionally performed
through a superstructure-based approach [48]. A super-
structure is a systematic abstraction that consists of all
possible alternatives in an energy system design includ-
ing different system configurations, process integration,
pathway interactions, operating conditions, and other
important design parameters. For example, in designing
a process for manufacturing a chemical product, possible
alternatives could be different feedstocks, heat and power
generation sources, technological units, and operational
modes. This is the classical process synthesis problem
[49, 50] that originates from optimizing the design of heat
exchanger networks in the 1980s [51]. Other energy sys-
tem design problems include molecular design [52-54],
material discovery [55-57], process intensification
[58-60], and supply chain networks [61-63]. From
representing an energy system design as a superstruc-
ture through mathematical equations, an optimization
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Fig. 1 Key methodologies of energy systems engineering. The judicious utilization of energy feedstocks requires optimal energy system design and
operation, incorporating important concepts from modeling & data analysis, multi-objective optimization, and optimization under uncertainty

problem is formulated and solved to determine the
optimal design from all other candidates.

Selection between design options is a discrete deci-
sion, while continuous modeling is needed to capture
first principles like mass and energy balances. Linear pro-
gramming (LP), first introduced in the 1930s and 40s
[64, 65] to optimize military efforts during the war, han-
dles continuous variables, but cannot illustrate discrete
decision-making. By introducing binary (0-1) variables
into the LP formulation, mixed-integer programming
(MIP) is well-suited to model energy system superstruc-
tures [11]. In a MIP model, binary variables capture the
discrete decisions and their realizations correspond to
the selection (or not) of an alternative option. In fact,
any logical condition between discrete events in a super-
structure can be expressed through binary variables [66].
Depending on the nature of energy system, the continuous

variables could be linearly or nonlinearly related, resulting
in mixed-integer linear (MILP) or mixed-integer nonlin-
ear (MINLP) problems. While solving MIP models has
been a challenge, commercial solvers have dramatically
improved over the years, especially for MILP problems,
due to the significant developments in solution algorithms
and increases in computational power [67, 68]. Large-
scale MILP problems and modestly-sized MINLP prob-
lems are now routinely solved using commercial software.
Nevertheless, customized algorithms are still necessary
to solve specific instances of MIP problems, especially
large-scale nonconvex MINLP types to global optimality
[69-71].

Optimal operation
Once an energy system design has been implemented,
the focus switches to its operation. Unlike the design
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phase, determining the optimal operation of an energy
system involves temporal and dynamic considerations. An
energy system is usually designed to operate at defined
setpoints, and given certain conditions that actualize, it
may operate at other setpoints as well. Control strate-
gies are required to keep the energy system at these
setpoints. For example, in keeping a reactor at a specific
temperature or its product output at a targeted purity,
proportional-integral-derivative (PID) controllers [72] are
typically implemented. While these controllers are proven
solutions, they do not provide any guarantee of opti-
mality or stability because they are empirical and not
model-based. In the PSE community, model predictive
control (MPC) is a model-based control algorithm, first
conceived in the 1979 by Cutler and Ramaker at Shell
[73], for optimal and stable operation. State-space mod-
els derived from the energy system design are used for the
MPC [74]. Analogies between control and other energy
system operational issues at different timescales, such as
production planning and scheduling [75-79], have been
mentioned.

A complete rigorous modeling of energy system oper-
ations would necessitate dynamic programming (DP),
where equations for each time period are fed as inputs into
the equations for the next time period and so on in a recur-
sive fashion. DP traces its development back to Bellman
in the 1950s [80]. While a thorough approach, DP mod-
els are typically too large and complex to solve in a timely
manner. They suffer from the curse of dimensionality as
the amount of equations explodes exponentially as the
number of time periods grows. As a workaround, instead
of capturing the entire timeline, operational models for
planning, scheduling, and control are usually applied in
a discrete-time rolling or moving horizon manner [74].
Here, only a smaller horizon of the entire timeline is mod-
eled initially, and then as time passes, the model is stepped
forward in time by advancing this horizon. Operational
models can be either linear or nonlinear; however, they
are typically linear [81] as the time component already
places a heavy computational burden on the solution of
DP models and finding a feasible operation is sometimes
more important than locating the absolute best, especially
in scheduling problems [82]. Large-scale linear DP mod-
els are now regularly solved for energy system operations
[83-86].

Simultaneous design and operation

Up until now, the design and operation of an energy sys-
tem has been constructed as two separate problems; in
actuality, they are intricately related and solution to one
depends on the solution to the other. When considered
alone, it is possible that an optimal design may not have a
feasible operation, or vice versa. Moreover, separate opti-
mal design and optimal operation may not reflect the
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true optimum of the overall energy system and lead to
suboptimal results. Therefore, it is paramount to develop
strategies to integrate together energy system design and
operation [87, 88]. One such method is multi-parametric
programming (mpP), where an optimization problem is
solved for a range and as a function of multiple param-
eters [89]. mpP dates back to the 1950s, and early work
originated in the field of sensitivity analysis for LP [90].

In a mpP model combining energy system design and
operation, the operation can be optimized in terms of
the design parameters — that is the optimal operation
is expressed as a function of the design (i.e. a design-
dependent operation). In other words, mpP maps lower
level decisions such as design to upper level decisions
like control and scheduling [91]. An mpP approach
has been utilized to investigate the simultaneous design
and operation of a continuously stirred tank reactor, a
binary distillation column, and a combined heat and
power generation unit through design-dependent con-
trollers [92]. Furthermore, as renewable energies con-
sumption grows, the integration of design and operation
will become an even more important research area within
energy systems engineering for addressing intermittency
[93-96].

Multiple criteria decision making

In constructing and solving these optimization problems,
model equations describing the energy system become
constraints, and the criterion one wishes to optimize over
is the objective function. Typical criteria for energy sys-
tems are energy efficiency, economic performance, carbon
footprint, and environmental impact indicators. Depend-
ing on the choice of objective function, the optimal solu-
tion will vary — there are competing interests among the
different criteria. For example, in designing a gas com-
bustion engine, an economic profit maximization may
determine coal feedstock to be most lucrative, but an envi-
ronmental emissions minimization may choose biomass
as the eco-friendliest. While a single objective func-
tion, usually an economic one, is characteristic of most
energy systems engineering problems, challenges with
resource supplies and greenhouse gas emissions require
energy systems that are holistically designed and operated
with respect to efficiency, economics, and environmen-
tal factors [97-99]. Multi-objective optimization (MO),
the simultaneous optimization according to two or more
conflicting criteria, is one suitable strategy to consider
the existing trade-offs among different objective func-
tions [100-102]. The goal of MO is to calculate a Pareto
front, a set of equally good optimal solutions, that cap-
tures these trade-offs between conflicting criteria [103]. A
decision-maker can then make an optimal decision based
upon his individual interests and preferences for differ-
ent target levels for each criterion. The epsilon-constraint
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method is the most popular method for solving MO
problems [104].

Uncertainty in design and operation

In all the optimization problems discussed thus far,
parameter values have been assumed to be definitively
known. In reality, this is often not the case, and there
is some uncertainty associated with the parameters. For
example, crude oil prices can fluctuate geographically and
throughout the year; this influences the optimal design
and operation of a refinery. Depending on what parameter
values are realized, a solution to an optimization prob-
lem may no longer be optimal or even feasible because the
parameter in a constraint has taken on a different value
than what was first assumed when solving the problem.
Actual realizations of uncertain parameters can affect the
solution’s quality. Therefore, it is important to account for
sources of uncertainty in energy systems during the model
development phase, especially since the uncertainty could
propagate between different levels of the design or
operation.

From a modeling prospective, uncertainty can be
addressed either stochastically or probabilistically [105-107].
Stochastic programming (SP) treats the uncertain param-
eters as random variables that when considered together
generate different scenarios over which to model and
optimize [108, 109]. SP problems are typically solved
using Monte Carlo [110] or stage-wise decomposition
techniques like Bender’s [111]. Robust optimization (RO)
bounds uncertain parameters within uncertainty sets con-
sisting of all possible realizations and assigns probabil-
ities to parameter violation of bound [112-114]. While
this guarantees feasibility, resulting robust solutions are
often overly conservative. For this reason, probabilistic
guarantees on constraint violation are implemented to
improve the performance of robust solutions [115-120].
RO problems can be solved with commercial MIP solvers,
after reformulating them as deterministic optimization
problems using strong duality properties of LP. Notwith-
standing, there is no agreed upon standard method to
account for uncertainty. In the literature, both SP and RO
have been employed to study energy systems of indus-
trial importance [121, 122]. The right technique likely
depends on the specific energy system being studied
[123].

These methodologies presented above form the funda-
mental basis of energy systems engineering. While not
exhaustively comprehensive, the goal was to describe with
sufficient detail the essence of energy systems engineer-
ing toward addressing the complex design and operation
of energy systems. In the following sections, applica-
tions in several interesting energy systems are presented
to highlight the utility and power of energy systems
engineering.
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Applications of energy systems engineering

The methodologies listed in the previous section have
been applied to various energy systems. Interested read-
ers are encouraged to read the following publications from
our research group on the listed topics below:

1) Optimal production of fuels and chemicals through
process synthesis [124—127]

2) Supply chain analysis of fuels and chemicals [128,
129]

3) Polygeneration energy systems [130—132]

4) Combined heat and power generation systems
[92, 133, 134]

5) Design and operation of fuel cells and electrolyzers
[135-138]

6) Food-energy-water nexus [139-141]

7) Fault detection and diagnosis in chemical processes
[142, 143]

To show the power of energy systems engineering anal-
yses, we will present a few studies in detail in this chapter.
Selected are three examples of an energy systems engi-
neering approach to tackle the multi-faceted and multi-
scale challenges in the design, supply chain, and operation
of producing energy carriers. We will first present our
optimal energy carrier production process design using
process synthesis, then follow with a supply chain anal-
ysis of Texas. After that, we will show how design and
operation of a PEM electrolyzer can be considered simul-
taneously using mpP techniques.

Process synthesis and global optimization for sustainable
ammonia production

Ammonia is one of the most widely produced chemicals
in the world. Global ammonia production in 2015 was
reported to be over 140 million tons [144]. While cur-
rently more than 80% of the produced ammonia is used for
fertilizer production, it also offers a promising potential
as a renewable energy carrier. If produced from renewable
resources, ammonia does not produce any GHGs when
converted back to power. It has a high hydrogen content
(17.8 wt.%) and more favorable storage and transporta-
tion characteristics compared to other energy carriers
like pressurized or liquefied hydrogen [145]. Due to this
dual opportunity, demand for ammonia in the future is
expected to grow. While industrial ammonia synthesis
(Eq. 1) by the famous Haber-Bosch process is very-well
established and has been finely optimized during its 100
years of practice, it is energy intensive (requires 28-30
GJ/ton of ammonia) and has a significant carbon footprint
(on average 2.8 tons of CO;/ton of ammonia) due to its
dependence on fossil feedstocks for hydrogen and power
generation [146, 147].

Ny + 3Hy = 2NHs, AH° = —914kJ/mol (1)
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In their work, Demirhan et al. [127] used process
synthesis and superstructure optimization to compare
ammonia production from different renewable feedstocks
and production routes. They analyzed the economic fea-
sibility of sustainable ammonia production through com-
paring the effects of GHG emission restrictions, plant
location (i.e. different utility and feedstock prices and
availability), and plant scales on production costs. The
natural gas-based production route is used as a reference
case.

A conceptual design of the ammonia production facility
is illustrated in Fig. 2. It consists of three main compo-
nents: (i) plant, (ii) utility system, and (iii) heat recovery
system. These components are highly integrated; they
exchange power, heat, and process streams. The plant
takes in raw materials and converts them to products.
Depending on the process, the plant can consume or
generate electricity and/or heat. The ammonia plant has
subsections in itself: (1) natural gas reforming, (2) biomass
gasification, (3) water electrolysis, (4) synthesis gas clean-
ing, (5) air separation unit, and (6) Haber-Bosch process
for ammonia synthesis. Each of these subsections can
involve reactor, separation, and recycle subsystems. Pro-
cess alternatives of the plant and the connections are
presented in Fig. 3. The utility system consists of heat and
power generation units and waste water treatment facili-
ties. It takes fuel, air, and water to provide the ammonia
plant with electricity, power, and steam. It also provides
the heat recovery system with hot and cold utilities. Heat
recovery system plays a very important role in utilizing the
wasted heat from the ammonia plant to minimize the hot
and cold utility requirements. Process synthesis strategies
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can generate optimal process flowsheets with simultane-
ous heat, power, and water integration by exploiting the
interactions between these three components [148, 149].

When all the technology alternatives, operating condi-
tion options, interconnections, and heat, power, and water
integration systems are embedded in the postulated pro-
cess superstructure, a large scale nonconvex MINLP is
obtained in the form shown in Eq. 2,

min f(x,y)
%5y
st. h(x,y) =0
gxy) =0
x € R"
y e {01} (2)

where x is a vector of continuous variables that repre-
sents the molar flow rates, compositions of the process
streams, split fractions, total enthalpy flows, transferred
or absorbed heat, and costs of the processing units.

y is a vector of 0-1 variables that denote the potential
existence of a process unit (e.g. 1 if a unit is selected, 0
else).

f(x,9), the objective function, is the performance crite-
rion that is the levelized total cost of ammonia production.

h(x,y) are the equality constraints that denote stream
connections, total mass/component/atomic balances,
energy balances, equilibrium relationships, input-output
relationships for black-box units which constitute the pro-
cess constraints as well as unit investment costs functions.

g(x,y) are the inequality constraints which correspond
to design specifications, restrictions (e.g. GHG emissions,
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product purities, etc.), feasibility constraints, and log-
ical constraints (e.g. select only one type of reactor).
Solution of such large nonconvex MINLPs requires global
optimization techniques and tailored algorithms. Inter-
ested readers are encourage to read work by Floudas and
coworkers to learn more about the global optimization
methods used in this work [70, 148].

One case study from the work focused on ammo-
nia production in Texas (TX), where GHG emissions
are restricted to 25% of a traditional natural gas-based
ammonia plant and production capacity is set as 500
metric tons/day. Considered production routes include
natural gas reforming (NG), hardwood-type (HW) for-
est residue gasification, municipal solid waste (MSW)
type biomass gasification, wind-powered water electroly-
sis (W), and solar-powered water-electrolysis (S). Tables 1
and 2 show the total production cost and investment cost
breakdowns.

Table 1 Total production cost breakdown of ammonia plants for

Texas

Cost TX-NG-500 TX-HW-500 TX-MSW-500 TX-W-500 TX-S-500
contributions

Biomass 0.00 120.21 107.44 0.00 0.00
Natural gas 85.34 0.00 0.00 0.00 0.00
Water 0.69 0.99 0.99 241 2.38
Investment 229.52 211.77 277.02 23346 240.10
COy TS&M 7.26 0.07 0.00 0.00 0.00
oM 60.60 55.91 73.14 61.63 63.39
Electricity 88.66 4553 56.75 53243 61049
BEP ($/ton 47205 43448 51536 82993 91633
Ammonia)
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Table 2 Investment cost breakdown of ammonia plants for Texas
Plant section  TX-NG-500 TX-HW-500 TX-MSW-500 TX-W-500 TX-S-500

Syngas 51.72 60.50 131.72 0.00 0.00
generation

Syngas 49.71 28.65 31.95 0.31 0.31
Cleanup

Ammonia 67.98 61.64 61.64 61.64 61.64
Syn. Loop

Water 0.00 0.00 0.00 12175 12175
Electrolysis

Air Separation 50.14 41.31 41.31 41.31 4131
H&P 15.31 20.76 16.06 0.00 740
Integration

Wastewater  10.89 13.53 13.82 24.97 24.67
Treatment

Total (MMS)  245.75 226.75 296.63 24997  257.08

TX-HW-500 production cost is lower than that of the
base case TX-NG-500. TX-MSW-500 has higher produc-
tion costs, mainly due to expensive cleaning operation
used for MSW processing. Wind- or solar-powered water
electrolysis-based ammonia production has high produc-
tion costs, due to high electricity consumption of the elec-
trolyzers. Sensitivity studies show that water electrolysis-
based ammonia production only becomes competitive
when renewable electricity prices are very low. This is
important to note, because the excess electricity produc-
tion from renewables can often be sold at a negative price
in states like California to prevent overloading the grid.
Such excess production can be used to power electrol-
ysis to store intermittent solar resources in renewable
ammonia.

Energy carriers supply chain optimization

A challenging barrier to greater integration of renew-
able energies such as solar and wind is their intermit-
tency. Solar irradiation and wind speeds fluctuate hourly,
daily, seasonally, and geographically. Moreover, solar and
wind availabilities are often asynchronous with consumer
energy demands. One potential solution to the intermit-
tency problem is storing energy during periods and in
areas of excess supply. Later on, the stored energy can be
utilized when renewable energies are not directly avail-
able. The DOE [150], IRENA [151], and IEA [152] have
acknowledged that developing cost-effective energy stor-
ages is a crucial step for the wider adoption of renewable
energies. Options for electrical energy storage include
pumped-storage hydroelectricity (PSH), compressed air
energy storage (CAES), batteries, and chemical com-
pounds [153, 154].

While they are mature and already deployed large-scale
technologies, PSH and CAES are geographically limited in
their suitable construction sites. On the other hand, the
storage capacity of batteries is much smaller. At current
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costs, the scale-up of batteries is prohibitively expen-
sive, and they are more fit for distributed applications
[152, 155]. Energy can be stored in chemical compounds
through renewable energy powered water electrolysis to
produce hydrogen [156]. Other chemicals, such as ammo-
nia [157, 158] and methanol [159], can also be synthesized
from hydrogen. Storing energy in chemicals is attractive
because their production is well-studied, can be easily
scaled up to large volumes, and benefits from economies
of scale. Moreover, chemicals have higher energy content
than batteries and are geographically flexible in terms of
where they can be produced and consumed. In this lat-
ter regard, chemicals can act as energy carriers, storing
and transporting renewable energy from regions of excess
supply to demand areas (Fig. 4). Energy carriers are then
converted back to electricity on-demand through fuel cells
or gas turbines. Compared to other storage media, energy
carriers have several more intermediary steps, and this is
an existing cost barrier to overcome.

An infrastructure that coordinates the logistics of car-
riers storing and transporting energy is a complex energy
system in which the optimal design is not self-evident.
Among other decisions, it requires the following key
considerations: which renewable resources to utilize as
feedstock, which energy carriers to produce, what types
of production facilities to build, where to build, what
means to transport carriers, where to send them, and
what conversion technologies to use. Methodologies from
energy system engineering are needed to design a cost-
effective energy carrier supply chain network that max-
imizes the carriers’ potential and is competitive with
PSH, CAES, and batteries. Previous works [129, 160-162]
have only consider single energy carriers in the supply
chain, when in fact the optimal may include a combina-
tion of multiple ones. Here, all carrier options are col-
lected into a network superstructure and modeled using
a MILP formulation. Figure 5 shows the necessary input
parameters into an energy carrier supply chain model.
Binary variables determine the location and type of pro-
duction facilities and conversion technologies, whereas
continuous variables are associated with network flows
and power capacities. Equality constraints denote net-
work flow balances, while inequalities govern resource
limitations and logical constraints. The overall objective
function of the model (Eq. 3) is to minimize the lev-
elized cost of electricity (LCOE) delivered at the demand
locations.

min  Costyyest + Costogm + Costeedstock + COStTmnsport
+Coststorage + CoStrang — Salesoxygen (3)

A preliminary case study implementing the aforemen-
tioned MILP model is considered for designing an energy
carrier supply chain network in Texas. Wind energy is
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concentrated in the central and northern part of the state,
whereas solar energy is most abundant in the west; how-
ever, the majority of the population lives closer to the
eastern part. In this setup, energy carriers are storing
and transporting renewable energy from resource-rich
areas to the five most populous cities in Texas. Using
energy carriers to replace 100% of the electricity demand,
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assuming 3-month storage time, the LCOE is $0.556/kWh
with the total energy carrier profile being 0.2% hydro-
gen, 55.5% ammonia, and 44.3% methanol (Fig. 6). About
91.7% of the renewable energy utilized for energy car-
rier production comes from wind, and the production
facilities are expectedly built near concentrated wind
resources. Mostly rail is used for long distance transport,

Jt‘

Fig. 4 Geographic mismatch of renewable energy and population in Texas. Solar and wind energy is concentrated away from the five most
populous cities: Houston, Dallas, Ft. Worth, San Antonio, and Austin. Energy carriers can be used to bridge this mismatch
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while truck is deployed for shorter distance deliveries.
This optimal, though conservative, LCOE is very com-
petitive with projected numbers from PSH, CAES, and
batteries. Other investigated scenarios will be part of a
subsequent publication [163].

Simultaneous design and control of PEM electrolyzers
Water electrolysis for producing hydrogen is crucial to
realizing sustainable ammonia production and energy
carriers because it is the most upstream component in
either energy system. Likewise, the electrolyzer alone is
an important energy system. There are three major kinds
of water electrolysis: alkaline, proton exchange membrane
(PEM), and solid oxide [164]. The PEM water electroly-
sis process involves three major process units as shown
in Fig. 7: oxygen and water management unit, electrolyzer
stack, and hydrogen management unit. Water is first
purified in the water management unit where ions are
removed to prevent catalyst poisoning. Dissolved oxygen
byproduct is also removed here. The water then goes into
the electrolyzer stack where the reaction takes place. Pro-
duced hydrogen is finally separated from the unreacted
water in the hydrogen management.

An advantage for PEM electrolyzers is their ability
to operate at high current density, which increases the
hydrogen production rate [165]. While this potentially
reduces the operating cost of the electrolyzer, high current
density also lowers the efficiency of the system due to
increased energy losses due to faradaic resistance and
overpotentials [165—-167]. Therefore, there is an opti-
mal current density to operate at. Another operational
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consideration for PEM electrolyzers is the inlet water
flowrate. The water electrolysis reaction is theoretically
endothermic, but because of these energy losses, heat is
generated in the process due to Joule heating. Some of
the reactant water is thereby used to cool and regulate
the temperature across the electrolyzer stacks. Safe oper-
ation of PEM electrolyzers requires maintaining this tem-
perature below a certain threshold. An increased water
flowrate can also reduce the effects of overpotentials such
as bubble coverage [168]. Consequently, there is an opti-
mal operating point for inlet water flowrate as well.
Because of these different operational objectives, mod-
eling approaches [169—171] from energy system engineer-
ing are needed to develop optimal operating strategies
that integrate with the PEM electrolyzer design. For exam-
ple, it is unnecessary to overdesign an electrolyzer stack
(increasing its capital investment cost) to handle a max-
imum current density and water flowrate if these values
will never be realized during the operation. First, high-
fidelity dynamic models of PEM electrolysis are developed
to represent the electrochemistry and mass & energy
balances. This allows for an accurate simulation and dig-
ital twin of the PEM electrolyzer. Next, these models
are reduced through statistical data methods (i.e. system
identification of input/output data) to create approxi-
mate models to be used as input in the controller design.
A multi-parametric model predictive control (mpMPC)
approach is used to construct operating strategies that
account for the electrolyzer design. The mpMPC [172] is
a mpP-inspired exact reformulation of the classical lin-
ear quadratic regulator (LQR) problem (Eq. 4), allowing
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control laws to be explicitly expressed as a function of
design parameters such as electrolyzer size and membrane
material. The classical LQR for optimal operation is:

N-1 M-1
. _ _ T _ T
mum] = Z (yk y,lf) QR (yk y,lf) + Z Auy RAuy
k=1 k=0
S.t. Xky1 = Axy + Buy
Yk = Cxg +Duy +e
Umin = Uk = Umax
Attin < Augp < Aty
Xmin = Xk = Xmax
Ymin = Yk = Ymax

u = [MO) ULy eenr umfl] (4)

where x is the state variables; u; are the control vari-
ables; Auy denotes the difference between two consecu-
tive control actions; y; and yf are the outputs and their
respective set points; R and QR are the corresponding
weights in the quadratic objective function; N and M are
the output horizon and control horizon, respectively; k
is the time step; A, B, C, and D are the matrices of the
discrete linear state-space model; and e denotes the mis-
match between the actual system output and the predicted
output at initial time.

In this manner, the simultaneous optimization of
energy system design and operation is performed. These
collective steps comprise the Parametric Optimization
and Control (PAROC) framework (Fig. 8), an integrated
software platform that facilitates this simultaneous opti-
mization [89].
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Fig. 7 PEM water electrolysis. An overview of the major parts comprising the system
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Ogumerem and Pistikopoluos [138] applied the PAROC
framework toward optimizing the control strategy for a
PEM electrolyzer. They observed that a mpMPC approach
allowed them to optimally operate a PEM electrolyzer
below cell voltage and temperature limits, while using
inlet water flowrate as the manipulated variable. It is also
confirmed that the water flowrate is better at respond-
ing to temperature changes, while current density is better
for adjusting operation for changes in cell voltage. The
mpMPC model elucidated explicit control laws depending
on the state of the electrolyzer (Fig. 9) and setups subse-
quent work on simultaneous optimization for the design
and operation of PEM electrolyzers. The mathematical
equations expressing the control laws can be included as
additional constraints in a superstructure MIP formula-
tion for PEM electrolyzer design. Thereby, in this fashion,
the design will be optimized with regards to the optimal
operation determined from the MPC. This will mini-
mize the capital and operating costs of PEM electrolyz-
ers, making them more competitive with their alkaline
counterparts.

New directions

In the previous sections, we described energy systems
engineering methodologies and showed a couple of exam-
ples to highlight their usefulness in the analysis of an
energy carrier system. As the energy sources and systems
continue to evolve, so will the energy systems engineer-
ing methods and application areas. Exciting developments

High Fidelity Dynamic Output

Modeling

Model
Reduction

Input

Approximate
Modeling

|
v

Multi-Parametric
Programming

mpMPC Output

set-point

Fig. 8 PAROC framework. An overview of the steps. Explicit MPC
models, designed from reduced models of the energy system, are
used to operate the system

Page 12 of 19

in various disciplines and fields have occurred in recent
years and before concluding this article, we want to touch
upon a few directions that we think will be explored
more vigorously in the upcoming years by energy systems
engineers.

Information technologies in design and operation of
energy systems

Manufacturing facilities collect large amounts of opera-
tional data thanks to improved sensor and monitoring
technologies. However, usefulness of data is limited with-
out any strong data integration, classification, visualiza-
tion, and analysis methods [173]. In their 2018 article,
Edgar and Pistikopoulos [174] report that many U.S. man-
ufacturing operations are data rich and knowledge poor.
They indicate that while operations use sophisticated
modeling and control technologies, usage of data analyt-
ics tools in the decision-making phase is still constrained.
Integrating manufacturing intelligence in real-time across
an entire production operation does not currently exist.
The concept of smart manufacturing (SM) is defined as
using the right data in the right form, the right technology
and the right operations, wherever and whenever needed
throughout the manufacturing enterprise. SM combines
operations technology with information technology to
improve the manufacturing platforms. Integrated mod-
eling approaches that combine sensors and monitoring,
data analytics, real-time data management and cloud
technologies with control and automation will become
more important in the future.

Implications of artificial intelligence and machine learning

for energy systems engineering

While artificial intelligence and machine learning have
been ongoing research areas for many decades [175-177],
only recently have they gained wider attention due to the
information age’s explosion of data and increasing com-
putational power [178]. Recent notable achievements with
IBM’s Watson and Google’s AlphaGo have even garnered
the interest of the greater public and brought promises
of how "big data" can revolutionize the way we under-
stand and study the world [179, 180]. However, as with
any new technological development, it might be better to
remain cautiously optimistic to not overhype the fruits
and oversell the perils, since there is still much progress
to be made for artificial intelligence and machine learn-
ing to mature, penetrate, and spread to greater adoption.
With enough time and directed efforts, we expect the
advances in the artificial intelligence and machine learn-
ing community will migrate into energy systems engineer-
ing and become as commonly utilized methodologies as
mixed-integer optimization and MPC have become in the
last few decades [181]. Research fields such as catalyst
design [182, 183] and drug discovery [184] are actively
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developing open databases to simulate data-driven and
hybrid model building. Artificial intelligence and machine
learning will be especially needed in areas, such as process
operation and fault diagnosis, where traditional mathe-
matical approaches are not suitable due to a lack of a
first-principles basis for model development.

There are now more ample resources and accessible
software to learn and implement artificial intelligence and
machine learning applications compared to earlier eras.
The increasing number of such tools allow users to eas-
ily code their own machine learning or neural network
models with little effort. In his engaging perspective on
the status of artificial intelligence in chemical engineer-
ing, Venkatasubramanian [181] points out that there is a
risk of substituting the well-trained usage of such tools
for actual mastery of artificial intelligence and machine
learning knowledge. We agree with his assessment that it
is important for future engineers to be properly educated
in the “know-why” rather than just the “know-how”. We
think there is a need to reform the current engineering
curriculum and graduate training to include more artifi-
cial intelligence and machine learning material in order

to better prepare individuals for advancing the energy
systems of the future.

Extending the boundaries: Increased interdisciplinary work
In this article, we presented applications focusing on
mainly chemical engineering topics. Other disciplines
such as electrical, mechanical, and civil engineering,
physics, chemistry, biology, operations research, statis-
tics, computer science, agriculture, economics, politi-
cal science, and law also conduct extensive research on
energy systems. Each of these disciplines has its own
areas of focus, goals, solution strategies, and challenges
related its problems. However, as the energy systems
get more complex and interconnected, close coopera-
tion of experts from such fields becomes a necessity.
One such area that has manifested itself as an interdisci-
plinary field is the food, energy, and water nexus (FEW-N).
In FEW-N, needs for each resource are linked to both
global demands as well as their interdependency. This
field brings researchers, stakeholders, and policy mak-
ers together to tackle problems that are too big to deal
with by each of the individual community [185]. Recent
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work showed that energy systems engineering methods
can be useful in modeling and exploiting the intercon-
nections between these resources. By coming up with
metrics to make sure that all perspective are equally
considered, energy systems engineering methods can pro-
vide solutions that are feasible, sustainable, and effective
[139, 186].

We expect new interdisciplinary fields to emerge in the
following years. Academic and government initiatives play
a key role here to advocate interdisciplinary work. Over
the recent years, we have seen an increase in the activ-
ities of university institutes focusing on energy research
across the USA. Such institutes try to bring experts from
the aforementioned fields together on joint projects, so
that the capabilities of each discipline are understood and
synergies between collaborations can be exploited. A fur-
ther indicator of academia’s emphasis on interdisciplinary
work is the rise in the number of master of science and
master of engineering programs on energy systems in the
USA. These programs have curriculum that cover topics
from various engineering disciplines and social sciences to
cultivate a generation of decision-makers with holistic and
broader views of the energy landscape. It is our opinion,
that energy systems engineering courses can play a pivotal
role in bringing different disciplines together.

Extending the scope: Increased industry-academia
collaboration

Another field that we expect to grow in the future is
the industry-academia collaborations. So far, aims of the
optimization community and industry have been differ-
ent. The value of novel optimization-based energy systems
engineering tools have been somewhat underestimated by
industry, and therefore, unevenly utilized [187]. Academia
products are high impact and peer-reviewed open publi-
cations so that funding can be ensured. The peer-review
process favors fast publications with novel & sophisti-
cated methodologies. For this reason, academia products,
especially in energy systems engineering, are in the form
of prototypical software. On the other hand, industry
is interested in basic ideas and their resulting benefits.
Industry does not show interest in migrating information
between multiple tools and software packages. Addition-
ally, most companies limit their information exchange
with academia due to confidentiality reasons. As a result,
academia has limited access to realistic cases [7]. However,
this picture is likely to change in the future. As Depart-
ment of Energy supported initiatives like Rapid Advance-
ment in Process Intensification (RAPID) Manufacturing
Institute and Clean Energy Smart Manufacturing Inno-
vation Institute (CESMII) show, collaborations between
industry and academia can work effectively when the
research objectives are clearly presented for both parties
[188, 189].
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New modeling environments and strategies for optimal
design and operation

Two of the most widely established modeling environ-
ments used for the formulation and optimization of alge-
braic problems are GAMS [190] and AMPL [191]. These
are commercial high-level programming platforms where
modeling is done by explicitly declaring all the vari-
ables, constraints, and parameters in an optimization pro-
gram. While these environments have access to numerous
solvers and have been used extensively by the optimiza-
tion community, they suffer from difficulties in data
input, manipulation, visualization, and implementation
of advanced algorithms. Introduction of recent modeling
environments, such as PyOMO [192] and JuMP [193] that
are built upon Python and Julia programming languages,
respectively, present an alternative approach via use of
object-oriented programming (OOP). Both environments
allow users direct access to modeling objects that are given
in a model library. By doing that, the users do not have
to specify governing equations, every time they add a
unit to a process. This will hopefully help modelers make
designs in a more standardized, intuitive way, and an eas-
ier way. PyOMO and JuMP currently have limited access
to optimization solvers. However, they are license-free
and open-source environments. Another difficulty with
the traditional way of formulating optimization problems
is modeling of process alternatives using integer variables.
There is no unique way to express the logic encapsulated
in the superstructure as a set of variables and constraints.
Generalized disjunctive programming (GDP) techniques
offer new alternatives to traditional mixed-integer mod-
eling approaches, by directly addressing the relationships
between two distinct alternatives (disjunctions) via logic-
based methods [194, 195]. OOP can work well with GDP
techniques to formulate more standardized mixed-integer
programs [196]. As a result, we expect the formulation
of optimization models to become easier in the upcom-
ing years. This can increase the interest and accessibility
of other communities in energy systems engineering tools
as well.

Closing the loop: Experimental expertise

Finally, research expertise in computational modeling
and experimentation are often concentrated in sepa-
rate groups and housed in different locations. However,
advancing energy systems to greater heights will depend
on both quantitative and empirical knowledge and expe-
rience. It is usually the role of principal investigators of
these groups to facilitate any teamwork between them.
We have emphasized that increased interdisciplinary and
industrial collaborations are necessary, and a significant
reason for this is to close the loop between modeling
and experimentation. Models can be unguided efforts
toward abstract understanding if not supplemented by



Demirhan et al. BMC Chemical Engineering (2019) 1:11

real-life results, and experiments can be tedious trial &
error excursions toward physical understanding if not
supported by quantitative tools. While collaborations can
help close the loop, they are difficult to secure due to lack
of appropriate funding and limited by networks between
researchers. Therefore, it is also imperative that model-
ers gain some empirical familiarity and experimentalists
become more versed in computation. In this way, knowl-
edge gaps between modeling and experimentation is min-
imized and progress in energy systems engineering is
accelerated. We strongly believe that a holistic approach to
energy systems engineering necessitates knocking down
walls between modeling and experimentation.

Conclusions

In this commentary, we introduced the methodologies,
applications, and a few possible future directions of energy
systems engineering. We hope the methods and results
show the importance and strength of an energy systems
engineering approach to improve the efficiency of tomor-
row’s energy systems.
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