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Abstract

Retrosynthetic analysis is a canonical technique for planning the synthesis route of organic molecules in drug
discovery and development. In this technique, the screening of synthetic tree branches requires accurate forward
reaction prediction, but existing software is far from completing this step independently. Previous studies
attempted to apply a neural network to forward reaction prediction, but the accuracy was not satisfying. Through
using the Edit Vector-based description and extended-connectivity fingerprints to transform the reaction into a
vector, this study focuses on the update of the neural network to improve the template-based forward reaction
prediction. Hard-threshold activation and the target propagation algorithm are implemented by introducing mixed
convex-combinatorial optimization. Comparative tests were conducted to explore the optimal hyperparameter set.
Using 15,000 experimental reaction data extracted from granted United States patents, the proposed hard-threshold
neural network was systematically trained and tested. The results demonstrated that a higher prediction accuracy

predicted reaction examples are also briefly illustrated.

Combinatorial optimization

was obtained than that for the traditional neural network with backpropagation algorithm. Some successfully
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Introduction
Drug discovery and development are two of the most
important tasks of the pharmaceutical industry. To meet
customers’ increasing demands while guaranteeing good
potency and minimal side effects, the structures of new
drug molecules have become increasingly complicated.
Meanwhile, drugs that have such complexity cannot be
manufactured in an acceptable time period using exist-
ing R&D technology; that is, extensive pharma R&D ac-
tivities are dramatically required, and a relatively short
discovery-development-deployment cycle is desirable [1].
Over recent decades, as a rate-limiting factor, innova-
tions in organic synthesis have significantly enabled the
discovery and development of important life-changing
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medicines, thereby improving the health of patients
worldwide [2, 3]. Nevertheless, innovations and excel-
lence in organic synthesis are expected to be the most
powerful driver for all phases of drug discovery and
development. Recently, chemists enthusiastically applied
advanced machine learning and artificial intelligence
(AI) technologies toward the synthesis of drug mole-
cules. For example, the Al-driven discovery of drug
molecules [4—6], automated planning of synthetic routes
[7-9], machine learning-driven optimization of reaction
conditions [10-12] and autonomous assembly of syn-
thetic processes [13-15].

Synthesis planning, which is regarded as the central
element of organic synthesis, can be traced back to the
1960s [16]. Traditional computer-aided approaches for
synthesis planning have different disadvantages, such as
low efficiency, poor repeatability and high experimental
cost. Additionally, many new compounds and reactions
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have been discovered, which highly requires novel syn-
thesis planning approaches. For example, the numbers
of reactions and compounds currently contained in the
Reaxys database have exceeded 40 million and 100 mil-
lion, respectively. During the last 3 years, a variety of
machine learning and Al methods, such as random for-
est, automated reasoning, support vector machines, and
more recently, deep learning, have demonstrated their
capacity for organic molecule discovery, design and pro-
duction [13, 17-19]. Clearly, the application of the afore-
mentioned new technologies for end-to-end organic
molecule discovery and development will be key to
achieving fully automated synthesis planning [20].

Retrosynthetic analysis is a canonical technique used
to plan the synthesis of small organic molecules for drug
discovery [21]. Generally, retrosynthesis analysis consists
of four steps: (1) determine the target compound; (2)
disconnect certain bonds that are considered to be easy
to form according to known chemical knowledge in the
target compound as the reverse of the reaction, and
search for possible precursors in this manner; (3) repeat
step 2 for all the precursors to form a synthesis tree, and
expand it until all precursors are available; and (4) evalu-
ate all the branches of the synthetic tree individually,
and then take the most possible branch as the optimal
route. Because different groups of reaction sites in the
same group of precursors may exist, that is, the differ-
ence between real reactions and expected reactions in
the branches may occur, step 4 is therefore critical, but
also the most difficult. Forward reaction prediction is
necessary to guarantee the correct evaluation of each
branch. The main aim of this paper is to present ma-
chine learning approaches for assisting forward reaction
prediction.

The existing approaches for forward reaction predic-
tion can be categorized as template-based and template-
free methods. For example, Coley et al. [17] applied
reaction templates to reactants to generate as many can-
didate reactions as possible, which were then used to
train a neural network. Whereas, for template-free
methods, Schwaller et al. [22] compared chemical reac-
tions from reactants to products to translations from
one language to another so that forward reaction predic-
tion could be transformed into machine translation and
solved by training a seq-to-seq recurrent neural network
that directly took reactants’ simplified molecular input
line entry specification (SMILES) as input.

As the research target is to discover new reactions that
are meaningful for organic synthesis according to exist-
ing reaction mechanisms, in this paper, the template-
based approach is adopted to fully reuse the discovered
reaction rules summarized from experimental results to
date. Specifically, a novel hard-threshold-based deep
neural network is adopted to improve the accuracy of
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forward reaction prediction. In detail, hard-threshold ac-
tivation and the target propagation algorithm are imple-
mented by introducing mixed convex-combinatorial
optimization. Comparative tests are conducted to ex-
plore the optimal hyperparameter set. The reminder of
the paper is structured as follows: forward reaction pre-
diction is described first, and then a hard-threshold
neural network is briefly described; next, results and dis-
cussions are presented; finally, the conclusion is
presented.

Forward reaction prediction
The overall approach for template-based forward reac-
tion prediction is summarized in Fig. 1.

Given a certain group of reactants to predict, reaction
templates extracted from a known popular template set
are applied to generate a group of candidate reactions.
Then the candidate reactions are converted into vectors.
The vectors of the group of candidates are then used for
training the hard-threshold-based deep neural network.
Generally, the data augmentation strategy, vectorized de-
scription of the reaction and candidate reaction selection
are key components.

Data augmentation strategy

Considering that the existing chemical knowledge data-
bases only contains real reactions that take place in
practice, to train the neural network to identify real re-
actions, it is necessary to adopt a data augmentation
strategy to expand the database. Specifically, real reac-
tions are first transformed into SMILES, which are fur-
ther converted to form the template set in the SMARTS
format via a heuristic algorithm. Then, all feasible popu-
lar templates are applied to each group of reactants in
real reactions to generate a large amount of fake reac-
tions that actually cannot occur in practice. Finally, the
augmented reaction dataset including real reactions
labeled as positive examples along with fake reactions
labeled as negative examples are provided to the hard-
threshold-based deep neural network.

Apply reaction

templates Vectorize
U &
Candidate Candidate Predicted
Reactant . .
Reaction Vectors Reaction

Hard-threshold NN
select

Fig. 1 lllustration of the template-based forward reaction

prediction process
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Vectorized description of the reaction

Because a neural network traditionally requires vector
format input, the augmented reactions must be con-
verted to vectors in an appropriate manner. Clearly, the
strategy for choosing features to construct the vectors
significantly affects the final prediction accuracy.

Following the “Edit Vector” format [17], an atom is de-
scribed as a 32-dimensional feature vector and a bond is
described as a four-dimensional feature vector. Each re-
action is first decomposed into four types of basic Edits,
that is, hydrogen loss, hydrogen gain, bond loss, and
bond gain, and then described as a combination of fea-
ture vectors. Note that the loss and gain of non-hydrogen
atoms are considered as the loss and gain of the bond be-
tween two atoms, respectively. As a result, the Edit Vec-
tor for either the bond loss or bond gain includes
information from the two atoms and the bond. For ex-
ample, hydrogen loss is described as a corresponding 32-
dimensional atom feature vector, whereas bond loss is
composed of two corresponding atom feature vectors
and the corresponding bond feature vector, which thus
can be described as a 68-dimensional feature vector.

To exactly explain how the Edit Vector describes the
reaction, in the following is a simplified example based
on the chemical reaction expressed in Fig. 2. The atom
feature vector in this example has six dimensions [is_
carbon, is_nitrogen, is_oxygen, is_chlorine, num_Hs,
num_non-H_atoms] chosen from the aforementioned 32
dimensions, and the bond feature vector has four dimen-
sions [is_single, is_aromatic, is_double, is_triple].

The above reaction can be decomposed into three Edits:
atom 1 (nitrogen) loses a hydrogen, atoms 2 (carbon) and
3 (chlorine) lose a single bond, and atoms 1 and 3 gain a
single bond. In the reactant, atom 1 has one hydrogen and
two non-hydrogen neighbors, atom 2 has no hydrogen
but is surrounded by three non-hydrogen neighbors, and
atom 3 has one non-hydrogen neighbor without any
hydrogen. Therefore, the feature vectors of atoms 1, 2 and
3, along with the two bonds, can be expressed as

a; =[0,1,0,0,1,2]
a = [17()’0707 03 3]

as = [0,0,0,1,0,1]
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b1z = [1,0,0,0]
bys = [1,0,0,0].

The Edit Vectors for the hydrogen loss and gain (e;
and e,, respectively) are directly taken as the feature vec-
tors of the corresponding atoms, and those of the bond
loss and gain (e; and ey, respectively) are taken as the
connection of the feature vectors of the corresponding
atoms and bonds:

er = [a] = [[0,1,0,0,1,2]]

ey = [0] = [[0,0,0,0,0,0]]

e3 = [ﬂz/bzs/ﬂs]
= [[1,0,0,0,0,3,1,0,0,0,0,0,0,1,0, 1]]
€4 = [ﬂl/blz/ﬂz]

= [[0,1,0,0,1,2,1,0,0,0,1,0,0,0,0,3]],

where “/” represents the connection of feature vectors, and
the outermost brackets indicate that the Edit Vector is the
combination of all the vectors of the basic Edit in a reac-
tion. For instance, if one reaction has four atoms that lose
hydrogen in the reactant, its Edit Vector for the hydrogen
loss (e;) has four six-dimensional feature vectors.

Candidate reaction selection
The selection step uses a complex neural network that
consists of several subnetworks, as shown in Fig. 3. For
each candidate reaction, the aforementioned four Edit
Vectors are calculated, and then provided as input to
four corresponding subnetworks. The sum of outputs
from the four subnetworks is then fed to the lower inte-
grating subnetwork to produce scalar probability scores.
The above steps are repeated for all candidate reactions,
and then all the probability scores are normalized using
the softmax method to estimate the probability of occur-
rence of each candidate reaction. Finally, all candidate
reactions are sorted by the probability score, and the
candidate that ranks first is regarded as the prediction
result. The prediction is correct if its outcome has the
same SMILES as the recorded reaction’s, and vice versa.
To improve the prediction accuracy, a hybrid model
that uses the Edit Vector and extended-connectivity

;
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Fig. 2 Reaction between chloroacetyl chloride and 2-methylamino-5-chlorobenzophenone
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fingerprint (ECFP) [23] is also considered in this paper.
The only difference between the two models is that an
extra subnetwork without a hidden layer, which evaluates
the ECFP, is added to the hybrid model, as shown in the
middle of Fig. 3. The output of the ECFP subnetwork is
multiplied by € when the subnetwork outputs are summed
before input to the final integrating subnetwork, where ¢
is the mixing factor. By adjusting ¢, the proportion of the
ECFP subnetwork’s output can be precisely controlled.

Hard-threshold neural network
The neural network, particularly the deep neural net-
work learning, is currently the most popular machine

learning algorithm and has powerful fitting capability
[24]. However, with the ceaseless expansion of the size
of the neural network, a series of problems, particularly
gradient vanishing and gradient explosion, often occur.
To eliminate this dilemma, in this paper, a hard-
threshold neural network is applied to predict the out-
comes of organic synthesis.

Constructing a hard-threshold neural network

“Hard-threshold neural network” refers to a neural net-
work that has hard-threshold activation, which includes
step activation and staircase activation shown in Fig. 4a
and b, respectively. Staircase activation is the sum of

-
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1.0 4 1.0 1

0.5 4 0.5 1

0.0 0.0

-0.5 -0.5

90 = 1,x=>0 [(n—1)x] + 1

-1.0 1 — -1.0 1 (x) =

-1.5 T T T T T -1.5 T T T r T

=1.5 =10 =05 0.0 0.5 10 15 -15 -1.0 -05 0.0 0.5 1.0 1.5
Fig. 4 Hard-threshold activations: a step activation and b staircase activation
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some step activations. Hard-threshold activation was
used in early contributions to perform binary classifica-
tion before the neural network had been proposed.
Hard-threshold activation has a constant derivative that
is zero, which can effectively avoid gradient vanishing
and gradient explosion. Additionally, the scale of the
output is almost fixed and insensitive to the scale of the
input, which helps to avoid certain abnormal propaga-
tion and simplify the computation. However, the zero
derivative of hard-threshold activation also prevents it
from being trained using traditional backpropagation.

Target propagation algorithm

A new backpropagation algorithm is required to train
the hard-threshold neural network to bypass the zero
derivative of hard-threshold activation.

Based on the “target propagation” concept [25], a new
target propagation algorithm called FTPROP-MB was
recently proposed [26]. Essentially, because a perceptron
with step activation is trainable, the hard-threshold
neural network could also be trainable if it could be
decomposed into a perceptron. Specifically, a target vec-
tor t; is introduced to represent what the d” layer is
supposed to output for all hard-threshold activation
layers. After the normal forward propagation procedure
for each layer, FTPROP-MB determines ¢, first, and then
introduces a layer loss L, which is used to compute the
gradient, similar to training a perceptron, so that the
weights can be updated.

Considering that the output of hard-threshold activa-
tion is a set of discrete values, the determination of t;
can be reduced to a combinatorial optimization problem.
In detail, the question of how to optimize ¢, regarding
the overall loss and layer loss can be expressed in a
standard form as follows:

minLq(za, ta)
zqg = Watg (1)
s.it.tg1€{0,1}",

where W, and z,; represent the weight and pre-
activation output of the d™ layer, respectively. The
search space is large and discrete because all the compo-
nents of ¢, are restricted to 0 and 1, so it is difficult for
common search algorithms to determine the optimal so-
lution in a reasonable time horizon. Because layer loss is
typically convex, FTPROP-MB determines the target
vector ¢, in the 4™ layer using a heuristic method: com-
pute the derivative of layer loss in the (d + 1 ) layer L, ,
; with respect to the d” layer’s output /1, and then set
t, according to the opposite sign of this derivative. This
method can be mathematically formulated as
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tay = r(hq)2 sign —%Ldﬂ(zam, i)l (2)
dj

When the layer loss function is convex, the negative
partial derivative of L;,; on hy points to the global
minimal of L, ;. Consider /4, = -1 as an example. If r
(ha4) = - 1, which indicates that the partial derivative of
Ly, ; is positive, clearly L, ; increases if 4, = + 1 when
fixing the other components of hg; thus, £, = r(hy) = - 1.
By contrast, when r(h,;) = + 1, which means that the par-
tial derivative of L, , ; is negative, it is not known exactly
whether L, ; increases or decreases if /1, =+ 1. How-
ever, the difference between /4,4 and r(h,) indicates that
the current value of /,; is a lack of confidence, so a nat-
ural choice is to lead z; to zero by adjusting ¢, to make
it more possible for /1, to flip, w.r.t £z =r(hg) =+ 1.

To summarize, the training process of an n-layer hard-
threshold neural network has both an optimization prob-
lem on the weights and convex-combinatorial optimization
problem on the target vectors; hence, a mixed convex-
combinatorial optimization problem is formed. A block dia-
gram of the target propagation algorithm is shown in Fig. 5.

Layer loss function

Till now we are still encountering the problem of choos-
ing the layer loss function. According to related work
[27], it is acceptable to adopt soft hinge loss and weigh-
ing according to the gradient, which is shown in Fig. 6.

Methods

Preparing the reaction database

The reaction datasets were originally extracted from the
1976-2013 USPTO dataset compiled by Lowe [28].
Based on popular template sets [29, 30], the original ex-
tracted reaction datasets were reduced to 15,000 groups
of reactants corresponding to 15,000 real reactions.
Then, approximately 5 million candidate reactions, in-
cluding real and fake reactions, were generated using the
aforementioned data augmentation strategy and stored
in MongoDB format.

Structure of the edit vector

The atom features used in this paper are much more
complex than the simplified example illustrated above,
whereas the bond features are the same. The specific
structure is shown in Table 1.

Structure of the ECFP for the hybrid model

A molecular fingerprint is also a common method for
vectorizing molecules. A fingerprint is typically a 0-1
vector with an adjustable dimension, and is equivalent to
the hash of a molecule. The ECFP proposed by Rogers
et al. [23] in 2010 is a circular fingerprint based on the
Morgan algorithm, and has become the de facto
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standard in the industry. In this paper, the ECFP of the
reactants and products is used with a radius of 2 and di-
mension of 1024 as a supplement to the Edit Vector to
construct the hybrid model, where the radius and di-
mension are determined by convention.

Building the training platform

PyTorch is one of the most popular deep learning
frameworks, and its high customizability makes it very
convenient for implementing all types of “non-standard”
backpropagation algorithms. Therefore, in this study,
PyTorch and an NVIDIA GeForce GTX 1070 GPU were
used to conduct all the experiments.

A dataset containing 15,000 groups of reactants (5 mil-
lion candidate reactions) was divided by convention: the
last 20% (3000 groups with 1 million candidate reac-
tions) was the test set; 12.5% of the remaining 12,000

groups was randomly taken as the validation set (1500
groups with 0.5 million candidate reactions); the final
10,500 groups (3.5 million candidate reactions) were
considered as the training set.

The initial hyperparameters for the hard-threshold
neural network were as follows: the hidden node struc-
ture of the four subnetworks evaluating the Edit Vector
was [200/100/50], whereas that of the integrating sub-
network was [50/1]; the activation was Tanh; and the
optimizer was AdaDelta (p = 0.95). Each batch contained
20 groups of reactants, and each model was trained for
85 epochs.

Results and discussion

Through extensive observations of the prediction accur-
acy, we concluded that the model tended to be stable
after 100 epochs, and the Adam optimizer made training

Fig. 6 Weighted soft hinge layer loss function

Soft
24 o
'\ Hinge Loss  soft_hinge(tq;jzq;) = tanh(—tq;zq;) + 1
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Table 1 Structure of the Edit Vector
Object Index Feature
Atom 0 Crippen logP contribution
1 Crippen MR contribution
2 TPSA contribution
3 Labute ASA contribution
4 Estate index
5 Gasteiger partial charge
6 Gasteiger H partial charge
7-17 atomic number (1-hot)
18-23 number of neighbors (1-hot)
24-28 number of hydrogens (1-hot)
29 formal charge
30 isin ring
31 is aromatic
Bond 0 is single bond
1 is aromatic bond
2 is double bond
3 is triple bond

more stable than AdaDelta. Therefore, the following re-
sults and discussions are from the experiments per-
formed using the Adam optimizer.

Edit vector-based model
The core of the hard-threshold neural network is activa-
tion, so its influence on the model was examined first.
The results are shown in Table 2, where “(Soft/Hard)” in
the first column indicates the type of activation.
Although naive step activation performed even worse
than Tanh activation, the prediction accuracy gradually
improved as the order of the hard-threshold activation
increased. When the order reached 7, staircase activation
achieved a higher prediction accuracy than traditional
soft activation. However, the prediction accuracy did not
continue to increase when the order was beyond 7.
Thus, in the study, the following experiments were per-
formed using 7-staircase activation.

Table 2 Influence of hard-threshold activation on the Edit
Vector-based model

Activation Type Training Validation Test
Accuracy Accuracy Accuracy

Tanh(Soft) 80.0% 71.1% 70.0%
Step(Hard) 72.7% 71.5% 69.1%
3-Staircase(Hard) 76.4% 69.3% 69.8%
5-Staircase(Hard) 78.0% 68.9% 68.8%
7-Staircase(Hard) 80.1% 70.0% 71.2%
10-Staircase(Hard) 80.0% 69.8% 70.8%
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Table 3 Influence of the subnetwork structure on the Edit
Vector-based model

Subnetwork structure Training Validation Test
Accuracy Accuracy Accuracy

200/100/50 80.1% 70.0% 71.2%
250/100/50 80.0% 72.0% 71.3%
250/125/50 78.8% 71.7% 70.9%
300/100/50 78.7% 69.8% 69.8%
100/100/50/50/50 76.0% 70.4% 69.9%
100/100/50/50/50 74.7% 70.1% 69.5%

The influence of the subnetwork structure is shown in
Table 3.

It can be seen that the prediction accuracy could not
be significantly improved by deepening or widening the
structure of the subnetworks. The subnetwork structure
of 200/100/50 was identified to be sufficiently compli-
cated in this task; that is, the accuracy was limited by
overfitting rather than underfitting, and more hidden
nodes would only disturb training. Therefore, the follow-
ing experiments focus on how to avoid overfitting using
the original subnetwork structure.

Dropout is a common and convenient strategy to
avoid overfitting [31]. The original idea of dropout is
very simple: in each forward propagation step, some out-
puts of the hidden nodes are forced to be zero. Then the
hidden nodes are prevented from connecting incorrect
partners, and overfitting can thus be avoided. Similar to
regularization, the principle of dropout is also to reduce
the number of non-zero parameters in the model. How-
ever, two additional advantages of dropout should be
emphasized: first, the meaning of the dropout rate is
relatively intuitive, so the proportion of parameters set
to zero in the model can be directly adjusted using the
dropout rate; and second, different from regularization
that penalizes all non-zero parameters, the parameters
are set to zero using dropout in a random manner dur-
ing each forward propagation in training, which im-
proves the robustness of the model. Note that the
dropout rate must be set carefully: a dropout rate that is
too low cannot avoid overfitting, whereas a dropout rate
that is too high will lead to underfitting. The experimen-
tal results for the dropout rate are shown in Table 4.

Table 4 Influence of the dropout rate on the Edit Vector-based
model

Dropout rate  Training Accuracy  Validation Accuracy — Test Accuracy

0 80.1% 70.0% 71.2%
0.01 77.3% 69.8% 70.1%
0.02 79.9% 72.5% 72.7%
0.1 754% 69.7% 70.8%
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As shown in Table 4, a high dropout rate (e.g., 0.1)
damaged the model significantly, whereas a low dropout
rate (e.g., 0.01) could not solve the overfitting problem
appropriately, and the prediction accuracy did not im-
prove in both cases. A dropout rate of 0.02 achieved a
balance between the above two cases; that is, it moder-
ated overfitting while not damaging the model too
much. After extensive experiments, the test accuracy
reached as high as 72.7%. Compared with the published
contribution of 68.5% for the test accuracy [17], more
than 120 reactions were correctly predicted additionally.

The training and validation processes of our model,
and the model provided in the published literature [17],
are shown in Fig. 7. Clearly, the hard-threshold neural

network has the potential to approach a higher predic-
tion accuracy while reducing the instability of the run-
ning processes.

Regarding training efficiency, the experiments above
show that the hard-threshold neural network and corre-
sponding optimization algorithm did not require many
extra computing resources during training. It took ap-
proximately 13—14h with 100 epochs, which is similar
to traditional neural networks.

Hybrid model
As mentioned in the section “Candidate reaction selec-
tion,” the mixing factor ¢ determines the proportion of

Table 5 Effect of the mixing factor € and deactivation rate on the hybrid model

€ Dropout rate Training Accuracy Validation Accuracy Test Accuracy
0 0 80.1% 70.0% 71.2%
1.0000 0 99.9% 63.1% 61.6%
0.1000 0 99.7% 65.1% 66.9%
0.0200 0 98.8% 71.0% 70.8%
0.0010 0 85.3% 71.9% 72.5%
0.0008 0 85.5% 75.3% 72.6%
0.0005 0 83.6% 70.1% 72.3%
0.0010 0 85.3% 71.9% 72.5%
0.0010 0.01 85.7% 73.8% 73.0%
0.0010 0.02 85.4% 73.7% 73.9%
0.0010 0.05 83.4% 73.1% 73.1%
0.0010 0.1 82.6% 70.9% 72.7%
0.0010 0.2 77.9% 68.7% 70.3%
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the ECFP subnetwork’s output in the sum fed to the in-
tegrating subnetwork, which directly determines how
much the model relies on ECFP. According to the re-
sults in the section “Edit Vector-based model,” a more
complex subnetwork is meaningless for prediction, so
only the influence of the mixing factor and dropout rate
was examined for the hybrid model, and the results are
shown in Table 5.

As shown in Table 5, a large mixing factor ¢ (e.g., 1 or
0.1), which made the model largely based on ECEFP,
caused serious overfitting. Additionally, the prediction
accuracy decreased rapidly with more serious overfitting
when the mixing factor ¢ was increased. Therefore, it
can be rationally inferred that a purely ECFP-based
model (¢ is very large) would only achieve a lower pre-
diction accuracy than that of the Edit Vector-based
model (¢ =0); that is, the information from ECFP alone
is not sufficient for good prediction, unlike that from the
Edit Vector. However, when the mixing factor was grad-
ually reduced to around 0.001, overfitting almost disap-
peared, and the prediction accuracy was even higher
than that of the Edit Vector-based model (¢ = 0), which
means that the extra information introduced by the
ECFP did result in positive effects on prediction.

Prediction examples

Next, two very important reactions are illustrated that
the proposed model successfully predicted but the model
in the literature failed to predict.

The reaction in Fig. 8 is taken from the synthesis route
of certain substituted 3,4-diarylpyrazole compounds,
which modulate the activity of protein kinases [32]. These
compounds are very useful in therapy and in the treat-
ment of diseases associated with dysregulated protein kin-
ase activity, such as cancer. For this reaction, the
substitution should occur on the pyrazole ring because of
the strong electron withdrawing effect of the nitro group.
The proposed model assigned a probability of 33.1% to
the true product. By contrast, the model in the published
literature assigned a probability of 1.7% to the true prod-
uct and a probability of 31.6% to the wrong product.

The reaction in Fig. 9 is extracted from the synthesis
route of novel P2X3 receptor antagonists that play a crit-
ical role in treating disease states associated with pain, in
particular, peripheral pain, inflammatory pain and tissue
injury pain [33]. For this reaction, because the hydro-
chloric acid-pyridine condition is weakly acidic, the
imine hydroxyl group on the product should not dehy-
drate to form a cyano group. The proposed model

| Reactant
o

X
+ HCl 4+ HO—NH, + |
=
N H s

Fig. 9 Amination of hydrazines with aromatic aldehydes under the hydrochloric acid-pyridine condition
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assigned a probability of 70.1% to the true product. By
contrast, the model in the published literature assigned a
probability of 47.1% to the true product and a probabil-
ity of 48.5% to the wrong product.

Conclusions

In this paper, we implemented a vectorized description
of a reaction using the Edit Vector and ECFP, and ap-
plied a hard-threshold neural network with the target
propagation algorithm to the template-based forward re-
action prediction. For the pure Edit Vector-based model,
the prediction accuracy reached as high as 72.7%, which
is higher than the published accuracy of 68.5%. We also
found that the prediction accuracy benefited from the
use of ECFP with the proper mixer factor. Although the
implemented hard-threshold neural network, whose
hyperparameters were adjusted using a heuristic ap-
proach, only improved the prediction accuracy by 4.2%,
it provides a new alternative approach for computer-
aided template-based forward reaction prediction of
organic synthesis for drug discovery purposes. An auto-
matic approach for adjusting the hyperparameters to
improve the prediction accuracy is under investigation.
Furthermore, novel approaches for describing the reac-
tion for prediction purposes are also under
consideration.
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