Hansen J, Ruedy R, Sato M, Lo K. Global surface temperature change. Rev Geophys. 2010;48:RG4004.
Dincer I. Renewable energy and sustainable development: a crucial review. Renew Sust Energ Rev. 2000;4(2):157–75.
Article
Google Scholar
Burke MJ, Stephens JC. Political power and renewable energy futures: a critical review. Energy Res Soc Sci. 2018;35:78–93.
Article
Google Scholar
Alvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem Rev. 2017;117(14):9804–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim RJ, Xie M, Sk MA, Lee J-M, Fisher A, Wang X, Lim KH. A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts. Catal Today. 2014;233:169–80.
Article
CAS
Google Scholar
Porosoff MD, Yan B, Chen JG. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities. Energy Environ Sci. 2016;9(1):62–73.
Article
CAS
Google Scholar
Yan N, Philippot K. Transformation of CO2 by using nanoscale metal catalysts: cases studies on the formation of formic acid and dimethylether. Curr Opin Chem Eng. 2018;20:86–92.
Article
Google Scholar
Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem Rev. 2015;115(23):12936–73.
Article
CAS
PubMed
Google Scholar
Li WH, Wang HZ, Jiang X, Zhu J, Liu ZM, Guo XW, Song CS. A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv. 2018;8(14):7651–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li K, Peng BS, Peng TY. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016;6(11):7485–527.
Article
CAS
Google Scholar
Gunasekar GH, Park K, Jung KD, Yoon S. Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts. Inorg Chem Front. 2016;3(7):882–95.
Article
CAS
Google Scholar
Kawi S, Kathiraser Y, Ni J, Oemar U, Li ZW, Saw ET. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane. ChemSusChem. 2015;8(21):3556–75.
Article
CAS
PubMed
Google Scholar
Pakhare D, Spivey J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev. 2014;43(22):7813–37.
Article
CAS
PubMed
Google Scholar
York APE, Xiao TC, Green MLH. Brief overview of the partial oxidation of methane to synthesis gas. Top Catal. 2003;22(3–4):345–58.
Article
CAS
Google Scholar
Kim HY, Park JN, Henkelman G, Kim JM. Design of a highly nanodispersed Pd-MgO/SiO2 composite catalyst with multifunctional activity for CH4 reforming. ChemSusChem. 2012;5(8):1474–81.
Article
CAS
PubMed
Google Scholar
Gallego GS, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragon F. Dry reforming of methane over LaNi1-yByO3+/−delta(B=Mg, Co) perovskites used as catalyst precursor. Appl Catal A. 2008;334(1–2):251–8.
Article
CAS
Google Scholar
Pakhare D, Shaw C, Haynes D, Shekhawat D, Spivey J. Effect of reaction temperature on activity of Pt- and Ru-substituted lanthanum zirconate pyrochlores (La2Zr2O7) for dry (CO2) reforming of methane (DRM). J CO2 Util. 2013;1:37–42.
Article
CAS
Google Scholar
Bian ZF, Das S, Wai MH, Hongmanorom P, Kawi S. A review on bimetallic nickel-based catalysts for CO2 reforming of methane. ChemPhysChem. 2017;18(22):3117–34.
Article
CAS
PubMed
Google Scholar
Arora S, Prasad R. An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts. RSC Adv. 2016;6(110):108668–88.
Article
CAS
Google Scholar
Aramouni NAK, Touma JG, Abu Tarboush B, Zeaiter J, Ahmad MN. Catalyst design for dry reforming of methane: analysis review. Renew Sust Energ Rev. 2018;82:2570–85.
Article
CAS
Google Scholar
Wang SB, Lu GQM, Millar GJ. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energy Fuel. 1996;10(4):896–904.
Article
CAS
Google Scholar
Kambolis A, Matralis H, Trovarelli A, Papadopoulou C. Ni/CeO2-ZrO2 catalysts for the dry reforming of methane. Appl Catal A. 2010;377(1–2):16–26.
Article
CAS
Google Scholar
Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S. CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): roles of lattice oxygen on C-H activation and carbon suppression. Int J Hydrog Energy. 2012;37(15):11195–207.
Article
CAS
Google Scholar
Bhavani AG, Kim WY, Lee JS. Barium substituted lanthanum manganite perovskite for CO2 reforming of methane. ACS Catal. 2013;3(7):1537–44.
Article
CAS
Google Scholar
Hu YH. Solid-solution catalysts for CO2 reforming of methane. Catal Today. 2009;148(3–4):206–11.
Article
CAS
Google Scholar
Zanganeh R, Rezaei M, Zamaniyan A. Dry reforming of methane to synthesis gas on NiO-MgO nanocrystalline solid solution catalysts. Int J Hydrog Energy. 2013;38(7):3012–8.
Article
CAS
Google Scholar
Garcia-Dieguez M, Pieta IS, Herrera MC, Larrubia MA, Malpartida I, Alemany LJ. Transient study of the dry reforming of methane over Pt supported on different gamma-Al2O3. Catal Today. 2010;149(3–4):380–7.
Article
CAS
Google Scholar
Yokota S, Okumura K, Niwa M. Support effect of metal oxide on Rh catalysts in the CH4-CO2 reforming reaction. Catal Lett. 2002;84(1–2):131–4.
Article
CAS
Google Scholar
Menad S, Ferreira-Aparicio P, Cherifi O, Guerrero-Ruiz A, Rodriguez-Ramos I. Designing new high oxygen mobility supports to improve the stability of RU catalysts under dry reforming of methane. Catal Lett. 2003;89(1–2):63–7.
Article
CAS
Google Scholar
Ferreira-Aparicio P, Guerrero-Ruiz A, Rodriguez-Ramos I. Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide over silica and alumina supported catalysts. Appl Catal A. 1998;170(1):177–87.
Article
CAS
Google Scholar
Whang HS, Choi MS, Lim J, Kim C, Heo I, Chang TS, Lee H. Enhanced activity and durability of Ru catalyst dispersed on zirconia for dry reforming of methane. Catal Today. 2017;293:122–8.
Article
CAS
Google Scholar
Park J-H, Yeo S, HeO I, Chang T-S. Promotional effect of Al addition on the Co/ZrO2 catalyst for dry reforming of CH4. Appl Catal A. 2018;562:120.
Article
CAS
Google Scholar
Park J-H, Yeo S, Kang T-J, Heo I, Lee K-Y, Chang T-S. Enhanced stability of co catalysts supported on phosphorus-modified Al2O3 for dry reforming of CH4. Fuel. 2018;212:77–87.
Article
CAS
Google Scholar
Ay H, Uner D. Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts. Appl Catal B. 2015;179:128–38.
Article
CAS
Google Scholar
Miura H, Endo K, Ogawa R, Shishido T. Supported palladium-gold alloy catalysts for efficient and selective hydrosilylation under mild conditions with isolated single palladium atoms in alloy nanoparticles as the main active site. ACS Catal. 2017;7(3):1543–53.
Article
CAS
Google Scholar
Kim SM, Abdala PM, Margossian T, Hosseini D, Foppa L, Armutlulu A, van Beek W, Comas-Vives A, Coperet C, Muller C. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts. J Am Chem Soc. 2017;139(5):1937–49.
Article
CAS
PubMed
Google Scholar
Nakamura J, Aikawa K, Sato K, Uchijima T. Role of support in reforming of CH4 with CO2 over Rh catalysts. Catal Lett. 1994;25(3–4):265–70.
Article
CAS
Google Scholar
Liu DP, Quek XY, Cheo WNE, Lau R, Borgna A, Yang YH. MCM-41 supported nickel-based bimetallic catalysts with superior stability during carbon dioxide reforming of methane: effect of strong metal-support interaction. J Catal. 2009;266(2):380–90.
Article
CAS
Google Scholar
Guo JJ, Lou H, Zhao H, Chai DF, Zheng XM. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Appl Catal A. 2004;273(1–2):75–82.
Article
CAS
Google Scholar
Ferreira-Aparicio P, Rodriguez-Ramos I, Anderson JA, Guerrero-Ruiz A. Mechanistic aspects of the dry reforming of methane over ruthenium catalysts. Appl Catal A. 2000;202(2):183–96.
Article
CAS
Google Scholar
Zhang ZL, Verykios XE, MacDonald SM, Affrossman S. Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts. J Phys Chem. 1996;100(2):744–54.
Article
CAS
Google Scholar
Alipour Z, Rezaei M, Meshkani F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane. Ind Eng Chem Res. 2014;20(5):2858–63.
Article
CAS
Google Scholar
Bellido JDA, De Souza JE, M'Peko JC, Assaf EM. Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane. Appl Catal A. 2009;358(2):215–23.
Article
CAS
Google Scholar
Pechimuthu NA, Pant KK, Dhingra SC, Bhalla R. Characterization and activity of K, CeO2, and Mn promoted Ni/Al2O3 catalysts for carbon dioxide reforming of methane. Ind Eng Chem Res. 2006;45(22):7435–43.
Article
CAS
Google Scholar
Therdthianwong S, Therdthianwong A, SiangChin C, Yonprapat S. Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2. Int J Hydrog Energy. 2008;33(3):991–9.
Article
CAS
Google Scholar
Laosiripojana N, Sutthisripok W, Assabumrungrat S. Synthesis gas production from dry reforming of methane over CeO2 doped Ni/Al2O3: influence of the doping ceria on the resistance toward carbon formation. Chem Eng J. 2005;112(1–3):13–22.
Article
CAS
Google Scholar
Liang TY, Lin CY, Chou FC, Wang MQ, Tsai DH. Gas-phase synthesis of Ni-CeOx hybrid nanoparticles and their synergistic catalysis for simultaneous reforming of methane and carbon dioxide to syngas. J Phys Chem C. 2018;122(22):11789–98.
Article
CAS
Google Scholar
Bellido JDA, Assaf EM. Effect of the Y2O3-ZrO2 support composition on nickel catalyst evaluated in dry reforming of methane. Appl Catal A. 2009;352(1–2):179–87.
Article
CAS
Google Scholar
Wang N, Chu W, Zhang T, Zhao XS. Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas. Int J Hydrog Energy. 2012;37(1):19–30.
Article
CAS
Google Scholar
Damyanova S, Pawelec B, Arishtirova K, Huerta MVM, Fierro JLG. The effect of CeO2 on the surface and catalytic properties of Pt/CeO2-ZrO2 catalysts for methane dry reforming. Appl Catal B. 2009;89(1–2):149–59.
Article
CAS
Google Scholar
Zhu YA, Chen D, Zhou XG, Yuan WK. DFT studies of dry reforming of methane on Ni catalyst. Catal Today. 2009;148(3–4):260–7.
Article
CAS
Google Scholar
Ni J, Chen LW, Lin JY, Kawi S. Carbon deposition on borated alumina supported nano-sized Ni catalysts for dry reforming of CH4. Nano Energy. 2012;1(5):674–86.
Article
CAS
Google Scholar
Han JW, Kim C, Park JS, Lee H. Highly coke-resistant Ni nanoparticle catalysts with minimal sintering in dry reforming of methane. ChemSusChem. 2014;7(2):451–6.
Article
CAS
PubMed
Google Scholar
Lu JL, Fu BS, Kung MC, Xiao GM, Elam JW, Kung HH, Stair PC. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science. 2012;335(6073):1205–8.
Article
CAS
PubMed
Google Scholar
Han JW, Park JS, Choi MS, Lee H. Uncoupling the size and support effects of Ni catalysts for dry reforming of methane. Appl Catal B. 2017;203:625–32.
Article
CAS
Google Scholar
Gould TD, Izar A, Weimer AW, Falconer JL, Medlin JW. Stabilizing Ni catalysts by molecular layer deposition for harsh, dry reforming conditions. ACS Catal. 2014;4(8):2714–7.
Article
CAS
Google Scholar
Das S, Ashok J, Bian Z, Dewangan N, Wai MH, Du Y, Borgna A, Hidajat K, Kawi S. Silica-ceria sandwiched Ni core-shell catalyst for low temperature dry reforming of biogas: coke resistance and mechanistic insights. Appl Catal B. 2018;230:220–36.
Article
CAS
Google Scholar
Song H. Metal hybrid nanoparticles for catalytic organic and photochemical transformations. Acc Chem Res. 2015;48(3):491–9.
Article
CAS
PubMed
Google Scholar
Chaudhuri RG, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2012;112(4):2373–433.
Article
CAS
Google Scholar
Cargnello M, Jaen JJD, Garrido JCH, Bakhmutsky K, Montini T, Gamez JJC, Gorte RJ, Fornasiero P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science. 2012;337(6095):713–7.
Article
CAS
PubMed
Google Scholar
Joo SH, Park JY, Tsung CK, Yamada Y, Yang PD, Somorjai GA. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater. 2009;8(2):126–31.
Article
CAS
PubMed
Google Scholar
Li ZW, Mo LY, Kathiraser Y, Kawi S. Yolk-satellite-shell structured Ni-Yolk@Ni@SiO2 nanocomposite: superb catalyst toward methane CO2 reforming reaction. ACS Catal. 2014;4(5):1526–36.
Article
CAS
Google Scholar
Wang K, Li XJ, Ji SF, Shi XJ, Tang JJ. Effect of CexZr1-xO2 promoter on Ni-based SBA-15 catalyst for steam reforming of methane. Energy Fuel. 2009;23(1–2):25–31.
Article
CAS
Google Scholar
Joo SH, Choi SJ, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature. 2001;412(6843):169–72.
Article
CAS
PubMed
Google Scholar
Wu Z, Li Q, Feng D, Webley PA, Zhao D. Ordered mesoporous crystalline γ-Al2O3 with variable architecture and porosity from a single hard template. J Am Chem Soc. 2010;132(34):12042–50.
Article
CAS
PubMed
Google Scholar
Yuan Q, Yin A-X, Luo C, Sun L-D, Zhang Y-W, Duan W-T, Liu H-C, Yan C-H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. J Am Chem Soc. 2008;130(11):3465–72.
Article
CAS
PubMed
Google Scholar
Wang N, Shen K, Huang LH, Yu XP, Qian WZ, Chu W. Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas. ACS Catal. 2013;3(7):1638–51.
Article
CAS
Google Scholar
Bosch C, Wild W. Producing hydrogen. In: Google patents; 1914.
Google Scholar
Fang KG, Li DB, Lin MG, Xiang ML, Wei W, Sun YH. A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catal Today. 2009;147(2):133–8.
Article
CAS
Google Scholar
Gao JJ, Wang YL, Ping Y, Hu DC, Xu GW, Gu FN, Su FB. A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas. RSC Adv. 2012;2(6):2358–68.
Article
CAS
Google Scholar
Gines MJL, Marchi AJ, Apesteguia CR. Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts. Appl Catal A. 1997;154(1–2):155–71.
Article
CAS
Google Scholar
Chen CS, Cheng WH, Lin SS. Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al2O3 catalyst. Catal Lett. 2000;68(1–2):45–8.
Article
CAS
Google Scholar
Chen XD, Su X, Duan HM, Liang BL, Huang YQ, Zhang T. Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: controlled product selectivity and a mechanism study. Catal Today. 2017;281:312–8.
Article
CAS
Google Scholar
Xu HT, Li YS, Luo XK, Xu ZL, Ge JP. Monodispersed gold nanoparticles supported on a zirconium-based porous metal-organic framework and their high catalytic ability for the reverse water-gas shift reaction. Chem Commun. 2017;53(56):7953–6.
Article
CAS
Google Scholar
Ye J, Ge Q, Liu CJ. Effect of PdIn bimetallic particle formation on CO2 reduction over the Pd-In/SiO2 catalyst. Chem Eng Sci. 2015;135:193–201.
Article
CAS
Google Scholar
Goncalves RV, Vono LLR, Wojcieszak R, Dias CSB, Wender H, Teixeira-Neto E, Rossi LM. Selective hydrogenation of CO2 into CO on a highly dispersed nickel catalyst obtained by magnetron sputtering deposition: a step towards liquid fuels. Appl Catal B. 2017;209:240–6.
Article
CAS
Google Scholar
Sun FM, Yan CF, Wang ZD, Guo CQ, Huang SL. Ni/Ce-Zr-O catalyst for high CO2 conversion during reverse water gas shift reaction (RWGS). Int J Hydrog Energy. 2015;40(46):15985–93.
Article
CAS
Google Scholar
Galvan CA, Schumann J, Behrens M, Fierro JLG, Schlogl R, Frei E. Reverse water-gas shift reaction at the Cu/ZnO interface: influence of the Cu/Zn ratio on structure-activity correlations. Appl Catal B. 2016;195:104–11.
Article
CAS
Google Scholar
Zhou GL, Dai BC, Xie HM, Zhang GZ, Xiong K, Zheng XX. CeCu composite catalyst for CO synthesis by reverse water-gas shift reaction: effect of Ce/Cu mole ratio. J CO2 UTIL. 2017;21:292–301.
Article
CAS
Google Scholar
Porosoff MD, Kattel S, Li WH, Liu P, Chen JG. Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides. Chem Commun. 2015;51(32):6988–91.
Article
CAS
Google Scholar
Porosoff MD, Baldwin JW, Peng X, Mpourmpakis G, Willauer HD. Potassium-promoted molybdenum carbide as a highly active and selective catalyst for CO2 conversion to CO. ChemSusChem. 2017;10(11):2408–15.
Article
CAS
PubMed
Google Scholar
Liu XY, Kunkel C, de la Piscina PR, Homs N, Vines F, Illas F. Effective and highly selective CO generation from CO2 using a polycrystalline alpha-Mo2C catalyst. ACS Catal. 2017;7(7):4323–35.
Article
CAS
Google Scholar
Zhang X, Zhu XB, Lin LL, Yao SY, Zhang MT, Liu X, Wang XP, Li YW, Shi C, Ma D. Highly dispersed copper over beta-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal. 2017;7(1):912–8.
Article
CAS
Google Scholar
Wu JJ, Wen C, Zou XL, Jimenez J, Sun J, Xia YJ, Rodrigues MTF, Vinod S, Zhong J, Chopra N, et al. Carbon dioxide hydrogenation over a metal-free carbon-based catalyst. ACS Catal. 2017;7(7):4497–503.
Article
CAS
Google Scholar
Frontera P, Macario A, Ferraro M, Antonucci P. Supported catalysts for CO2 methanation: a review. Catalysts. 2017;7(2):59.
Article
CAS
Google Scholar
Arandiyan H, Wang Y, Sun HY, Rezaei M, Dai HX. Ordered meso- and macroporous perovskite oxide catalysts for emerging applications. Chem Commun. 2018;54(50):6484–502.
Article
CAS
Google Scholar
Arandiyan H, Wang Y, Scott J, Mesgari S, Dai HX, Amal R. In situ exsolution of bimetallic Rh-Ni nanoalloys: a highly efficient catalyst for CO2 methanation. ACS Appl Mater Interfaces. 2018;10(19):16352–7.
Article
CAS
PubMed
Google Scholar
Wang Y, Arandiyan H, Scott J, Dai HX, Amal R. Hierarchically porous network-like Ni/Co3O4: noble metal-free catalysts for carbon dioxide methanation. Adv Sustain Syst. 2018;2(3):1700119.
Article
CAS
Google Scholar
Chang X, Wang T, Gong J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci. 2016;9(7):2177–96.
Article
CAS
Google Scholar
Neaţu S, Maciá-Agulló JA, Concepción P, Garcia H. Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water. J Am Chem Soc. 2014;136(45):15969–76.
Article
PubMed
CAS
Google Scholar
Huang M, Fabris S. CO adsorption and oxidation on ceria surfaces from DFT+ U calculations. J Phys Chem C. 2008;112(23):8643–8.
Article
CAS
Google Scholar
Kale MJ, Avanesian T, Xin H, Yan J, Christopher P. Controlling catalytic selectivity on metal nanoparticles by direct photoexcitation of adsorbate–metal bonds. Nano Lett. 2014;14(9):5405–12.
Article
CAS
PubMed
Google Scholar
Lindstrom C, Zhu X-Y. Photoinduced electron transfer at molecule−metal interfaces. Chem Rev. 2006;106(10):4281–300.
Article
CAS
PubMed
Google Scholar
Kim C, Hyeon S, Lee J, Kim WD, Lee DC, Kim J, Lee H. Energy-efficient CO2 hydrogenation with fast response using photoexcitation of CO2 adsorbed on metal catalysts. Nat Commun. 2018;9(1):3027.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu DD, Liu JL, Qiao SZ. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater. 2016;28(18):3423–52.
Article
CAS
PubMed
Google Scholar
Singh MR, Clark EL, Bell AT. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys Chem Chem Phys. 2015;17(29):18924–36.
Article
CAS
PubMed
Google Scholar
Vasileff A, Zheng Y, Qiao SZ. Carbon solving carbon's problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv Eng Mater. 2017;7(21):1700759.
Article
CAS
Google Scholar
Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff IB, Norskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):4998.
Bushuyev OS, De Luna P, Dinh CT, Tao L, Saur G, van de Lagemaat J, Kelley SO, Sargent EH. What should we make with CO2 and how can we make it? Joule. 2018;2(5):825–32.
Article
CAS
Google Scholar
Wang YH, Liu JL, Wang YF, Al-Enizi AM, Zheng GF. Tuning of CO2 reduction selectivity on metal electrocatalysts. Small. 2017;13(43):1701809.
Article
CAS
Google Scholar
Vasileff A, Xu CC, Jiao Y, Zheng Y, Qiao SZ. Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction. Chem. 2018;4(8):1809–31.
Article
CAS
Google Scholar
Kuhl KP, Hatsukade T, Cave ER, Abram DN, Kibsgaard J, Jaramillo TF. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc. 2014;136(40):14107–13.
Article
CAS
PubMed
Google Scholar
Feaster JT, Shi C, Cave ER, Hatsukade TT, Abram DN, Kuhl KP, Hahn C, Norskov JK, Jaramillo TF. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal. 2017;7(7):4822–7.
Article
CAS
Google Scholar
Hatsukade T, Kuhl KP, Cave ER, Abram DN, Jaramillo TF. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces. Phys Chem Chem Phys. 2014;16(27):13814–9.
Article
CAS
PubMed
Google Scholar
Kim C, Jeon HS, Eom T, Jee MS, Kim H, Friend CM, Min BK, Hwang YJ. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J Am Chem Soc. 2015;137(43):13844–50.
Article
CAS
PubMed
Google Scholar
Zhu WL, Michalsky R, Metin O, Lv HF, Guo SJ, Wright CJ, Sun XL, Peterson AA, Sun SH. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc. 2013;135(45):16833–6.
Article
CAS
PubMed
Google Scholar
Nursanto EB, Jeon HS, Kim C, Jee MS, Koh JH, Hwang YJ, Min BK. Gold catalyst reactivity for CO2 electro-reduction: from nano particle to layer. Catal Today. 2016;260:107–11.
Article
CAS
Google Scholar
Verma S, Hamasaki Y, Kim C, Huang WX, Lu S, Jhong HRM, Gewirth AA, Fujigaya T, Nakashima N, Kenis PJA. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 2018;3(1):193–8.
Article
CAS
Google Scholar
Mistry H, Reske R, Zeng ZH, Zhao ZJ, Greeley J, Strasser P, Roldan Cuenya B. Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc. 2014;136(47):16473–6.
Article
CAS
PubMed
Google Scholar
Yoon Y, Hall AS, Surendranath Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew Chem Int Ed. 2016;55(49):15282–6.
Article
CAS
Google Scholar
Hall AS, Yoon Y, Wuttig A, Surendranath Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J Am Chem Soc. 2015;137(47):14834–7.
Article
CAS
PubMed
Google Scholar
Zhu WL, Zhang YJ, Zhang HY, Lv HF, Li Q, Michalsky R, Peterson AA, Sun SH. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J Am Chem Soc. 2014;136(46):16132–5.
Article
CAS
PubMed
Google Scholar
Liu M, Pang YJ, Zhang B, De Luna P, Voznyy O, Xu JX, Zheng XL, Dinh CT, Fan FJ, Cao CH, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature. 2016;537(7620):382.
Article
CAS
PubMed
Google Scholar
Safaei TS, Mepham A, Zheng XL, Pang YJ, Dinh CT, Liu M, Sinton D, Kelley SO, Sargent EH. High-density nanosharp microstructures enable efficient CO2 electroreduction. Nano Lett. 2016;16(11):7224–8.
Article
CAS
Google Scholar
Lee HE, Yang KD, Yoon SM, Ahn HY, Lee YY, Chang HJ, Jeong DH, Lee YS, Kim MY, Nam KT. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano. 2015;9(8):8384–93.
Article
CAS
PubMed
Google Scholar
Kim JH, Woo H, Choi JW, Jung HW, Kim YT. CO2 electroreduction on Au/TiC: enhanced activity due to metal-support interaction. ACS Catal. 2017;7(3):2101–6.
Article
CAS
Google Scholar
Won DH, Shin H, Koh J, Chung J, Lee HS, Kim H, Woo SI. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew Chem Int Ed. 2016;55(32):9297–300.
Article
CAS
Google Scholar
Rosen J, Hutchings GS, Lu Q, Forest RV, Moore A, Jiao F. Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction. ACS Catal. 2015;5(8):4586–91.
Article
CAS
Google Scholar
Quan FJ, Zhong D, Song HC, Jia FL, Zhang LZ. A highly efficient zinc catalyst for selective electroreduction of carbon dioxide in aqueous NaCl solution. J Mater Chem A. 2015;3(32):16409–13.
Article
CAS
Google Scholar
Gao DF, Zhou H, Wang J, Miao S, Yang F, Wang GX, Wang JG, Bao XH. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc. 2015;137(13):4288–91.
Article
CAS
PubMed
Google Scholar
Gao DF, Zhou H, Cai F, Wang JG, Wang GX, Bao XH. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal. 2018;8(2):1510–9.
Article
CAS
Google Scholar
Cho M, Song JT, Back S, Jung Y, Oh J. The role of adsorbed CN and CI on an Au electrode for electrochemical CO2 reduction. ACS Catal. 2018;8(2):1178–85.
Article
CAS
Google Scholar
Jiang K, Kharel P, Peng YD, Gangishetty MK, Lin HYG, Stavitski E, Attenkofer K, Wang HT. Silver nanoparticles with surface-bonded oxygen for highly selective CO2 reduction. ACS Sustain Chem Eng. 2017;5(10):8529–34.
Article
CAS
Google Scholar
Kim C, Eom T, Jee MS, Jung H, Kim H, Min BK, Hwang YJ. Insight into electrochemical CO2 reduction on surface-molecule mediated Ag nanoparticles. ACS Catal. 2017;7(1):779–85.
Article
CAS
Google Scholar
Lee CW, Cho NH, Yang KD, Nam KT. Reaction mechanisms of the electrochemical conversion of carbon dioxide to formic acid on tin oxide electrodes. ChemElectroChem. 2017;4(9):2130–6.
Article
CAS
Google Scholar
Yoo JS, Christensen R, Vegge T, Norskov JK, Studt F. Theoretical insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. ChemSusChem. 2016;9(4):358–63.
Article
CAS
PubMed
Google Scholar
He JF, Johnson NJJ, Huang AX, Berlinguette CP. Electrocatalytic alloys for CO2 reduction. ChemSusChem. 2018;11(1):48–57.
Article
CAS
PubMed
Google Scholar
Chen YH, Kanan MW. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc. 2012;134(4):1986–9.
Article
CAS
PubMed
Google Scholar
Zhang S, Kang P, Meyer TJ. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc. 2014;136(5):1734–7.
Article
CAS
PubMed
Google Scholar
Gu J, Heroguel F, Luterbacher J, Hu XL. Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew Chem Int Ed. 2018;57(11):2943–7.
Article
CAS
Google Scholar
Kumar B, Atla V, Brian JP, Kumari S, Nguyen TQ, Sunkara M, Spurgeon JM. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew Chem Int Ed. 2017;56(13):3645–9.
Article
CAS
Google Scholar
Li FW, Chen L, Knowles GP, MacFarlane DR, Zhang J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew Chem Int Ed. 2017;56(2):505–9.
Article
CAS
Google Scholar
Won DH, Choi CH, Chung J, Chung MW, Kim EH, Woo SI. Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. ChemSusChem. 2015;8(18):3092–8.
Article
CAS
Google Scholar
Zheng XL, De Luna P, de Arquer FPG, Zhang B, Becknell N, Ross MB, Li YF, Banis MN, Li YZ, Liu M, et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule. 2017;1(4):794–805.
Article
CAS
Google Scholar
Han N, Wang Y, Yang H, Deng J, Wu JH, Li YF, Li YG. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun. 2018;9:1320.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee CH, Kanan MW. Controlling H+ vs CO2 reduction selectivity on Pb electrodes. ACS Catal. 2015;5(1):465–9.
Article
CAS
Google Scholar
Hara K, Kudo A, Sakata T. Electrochemical reduction of carbon-dioxide under high-pressure on various electrodes in an aqueous-electrolyte. J Electroanal Chem. 1995;391(1–2):141–7.
Article
Google Scholar
Melchionna M, Bracamonte MV, Giuliani A, Nasi L, Montini T, Tavagnacco C, Bonchio M, Fornasiero P, Prato M. Pd@TiO2/carbon nanohorn electrocatalysts: reversible CO2 hydrogenation to formic acid. Energy Environ Sci. 2018;11(6):1571–80.
Article
CAS
Google Scholar
Min XQ, Kanan MW. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway. J Am Chem Soc. 2015;137(14):4701–8.
Article
CAS
PubMed
Google Scholar
Kuhl KP, Cave ER, Abram DN, Jaramillo TF. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci. 2012;5(5):7050–9.
Article
CAS
Google Scholar
Sandberg RB, Montoya JH, Chan K, Norskov JK. CO-CO coupling on Cu facets: coverage, strain and field effects. Surf Sci. 2016;654:56–62.
Article
CAS
Google Scholar
Montoya JH, Peterson AA, Norskov JK. Insights into CC coupling in CO2 electroreduction on copper electrodes. ChemCatChem. 2013;5(3):737–42.
Article
CAS
Google Scholar
Garza AJ, Bell AT, Head-Gordon M. Mechanism of CO2 reduction at copper surfaces: pathways to C-2 products. ACS Catal. 2018;8(2):1490–9.
Article
CAS
Google Scholar
Hori Y, Murata A, Takahashi R. Formation of hydrocarbons in the electrochemical reduction of carbon-dioxide at a copper electrode in aqueous-solution. J Chem Soc Faraday Trans 1. 1989;85:2309–26.
Article
CAS
Google Scholar
Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Norskov JK. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci. 2010;3(9):1311–5.
Article
CAS
Google Scholar
Huang Y, Handoko AD, Hirunsit P, Yeo BS. Electrochemical reduction of CO2 using copper single-crystal surfaces: effects of CO* coverage on the selective formation of ethylene. ACS Catal. 2017;7(3):1749–56.
Article
CAS
Google Scholar
Schouten KJP, Kwon Y, van der Ham CJM, Qin Z, Koper MTM. A new mechanism for the selectivity to C-1 and C-2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci. 2011;2(10):1902–9.
Article
CAS
Google Scholar
Lum YW, Cheng T, Goddard WA, Ager JW. Electrochemical CO reduction builds solvent water into oxygenate products. J Am Chem Soc. 2018;140(30):9337–40.
Article
CAS
PubMed
Google Scholar
Kas R, Kortlever R, Yilmaz H, Koper MTM, Mul G. Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions. ChemElectroChem. 2015;2(3):354–8.
Article
CAS
Google Scholar
Jiang K, Sandberg RB, Akey AJ, Liu XY, Bell DC, Norskov JK, Chan KR, Wang HT. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat Catal. 2018;1(2):111–9.
Article
Google Scholar
Loiudice A, Lobaccaro P, Kamali EA, Thao T, Huang BH, Ager JW, Buonsanti R. Tailoring copper nanocrystals towards C-2 products in electrochemical CO2 reduction. Angew Chem Int Ed. 2016;55(19):5789–92.
Article
CAS
Google Scholar
Roberts FS, Kuhl KP, Nilsson A. High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. Angew Chem Int Ed. 2015;54(17):5179–82.
Article
CAS
Google Scholar
Wang ZN, Yang G, Zhang ZR, Jin MS, Yin YD. Selectivity on etching: creation of high-energy facets on copper nanocrystals for CO2 electrochemical reduction. ACS Nano. 2016;10(4):4559–64.
Article
CAS
PubMed
Google Scholar
Hori Y, Takahashi I, Koga O, Hoshi N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B. 2002;106(1):15–7.
Article
CAS
Google Scholar
Sen S, Liu D, Palmore GTR. Electrochemical reduction of CO2 at copper nanofoams. ACS Catal. 2014;4(9):3091–5.
Article
CAS
Google Scholar
Cao L, Raciti D, Li CY, Livi KJT, Rottmann PF, Hemker KJ, Mueller T, Wang C. Mechanistic insights for low-overpotential electroreduction of CO2 to CO on copper nanowires. ACS Catal. 2017;7(12):8578–87.
Article
CAS
Google Scholar
Ma M, Djanashvili K, Smith WA. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew Chem Int Ed. 2016;55(23):6680–4.
Article
CAS
Google Scholar
Huang P, Ci SQ, Wang GX, Jia JC, Xu JW, Wen ZH. High-activity Cu nanowires electrocatalysts for CO2 reduction. J CO2 UTIL. 2017;20:27–33.
Article
CAS
Google Scholar
Raciti D, Livi KJ, Wang C. Highly dense Cu nanowires for low-overpotential CO2 reduction. Nano Lett. 2015;15(10):6829–35.
Article
CAS
PubMed
Google Scholar
Ma M, Djanashvili K, Smith WA. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Phys Chem Chem Phys. 2015;17(32):20861–7.
Article
CAS
PubMed
Google Scholar
Hoang TTH, Ma SC, Gold JI, Kenis PJA, Gewirth AA. Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis. ACS Catal. 2017;7(5):3313–21.
Article
CAS
Google Scholar
Song H, Im M, Song JT, Lim JA, Kim BS, Kwon Y, Ryu S, Oh J. Effect of mass transfer and kinetics in ordered Cu-mesostructures for electrochemical CO2 reduction. Appl Catal B. 2018;232:391–6.
Article
CAS
Google Scholar
Yang KD, Ko WR, Lee JH, Kim SJ, Lee H, Lee MH, Nam KT. Morphology-directed selective production of ethylene or ethane from CO2 on a Cu mesopore electrode. Angew Chem Int Ed. 2017;56(3):796–800.
Article
CAS
Google Scholar
De Luna P, Quintero-Bermudez R, Dinh CT, Ross MB, Bushuyev OS, Todorovic P, Regier T, Kelley SO, Yang PD, Sargent EH. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat Catal. 2018;1(2):103–10.
Article
Google Scholar
Rahaman M, Dutta A, Zanetti A, Broekmann P. Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: an identical location (IL) study. ACS Catal. 2017;7(11):7946–56.
Article
CAS
Google Scholar
Jeon HS, Kunze S, Scholten F, Roldan Cuenya B. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal. 2018;8(1):531–5.
Article
CAS
Google Scholar
Chung J, Won DH, Koh J, Kim EH, Woo SI. Hierarchical Cu pillar electrodes for electrochemical CO2 reduction to formic acid with low overpotential. Phys Chem Chem Phys. 2016;18(8):6252–8.
Article
CAS
PubMed
Google Scholar
Ren D, Deng YL, Handoko AD, Chen CS, Malkhandi S, Yeo BS. Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper(I) oxide catalysts. ACS Catal. 2015;5(5):2814–21.
Article
CAS
Google Scholar
Kas R, Kortlever R, Milbrat A, Koper MTM, Mul G, Baltrusaitis J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons. Phys Chem Chem Phys. 2014;16(24):12194–201.
Article
CAS
PubMed
Google Scholar
Lee SY, Jung H, Kim NK, Oh HS, Min BK, Hwang YJ. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO2 reduction. J Am Chem Soc. 2018;140(28):8681–9.
Article
CAS
PubMed
Google Scholar
Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM, de Arquer FPG, Kiani A, Edwards JP, De Luna P, Bushuyev OS, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science. 2018;360(6390):783–7.
Article
CAS
PubMed
Google Scholar
Pander JE, Ren D, Huang Y, Loo NWX, Hong SHL, Yeo BS. Understanding the heterogeneous electrocatalytic reduction of carbon dioxide on oxide-derived catalysts. ChemElectroChem. 2018;5(2):219–37.
Article
CAS
Google Scholar
Lee S, Kim D, Lee J. Electrocatalytic production of C3-C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O-Cu catalyst. Angew Chem Int Ed. 2015;54(49):14701–5.
Article
CAS
Google Scholar
Chen YH, Li CW, Kanan MW. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc. 2012;134(49):19969–72.
Article
CAS
PubMed
Google Scholar
Ma M, Trzesniewski BJ, Xie J, Smith WA. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew Chem Int Ed. 2016;55(33):9748–52.
Article
CAS
Google Scholar
Verdaguer-Casadevall A, Li CW, Johansson TP, Scott SB, McKeown JT, Kumar M, Stephens IEL, Kanan MW, Chorkendorff I. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J Am Chem Soc. 2015;137(31):9808–11.
Article
CAS
PubMed
Google Scholar
Feng XF, Jiang KL, Fan SS, Kanan MW. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent Sci. 2016;2(3):169–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mariano RG, McKelvey K, White HS, Kanan MW. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science. 2017;358(6367):1187–91.
Article
CAS
PubMed
Google Scholar
Eilert A, Cavalca F, Roberts FS, Osterwalder J, Liu C, Favaro M, Crumlin EJ, Ogasawara H, Friebel D, Pettersson LGM, et al. Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J Phys Chem Lett. 2017;8(1):285–90.
Article
CAS
PubMed
Google Scholar
Favaro M, Xiao H, Cheng T, Goddard WA, Yano J, Crumlin EJ. Subsurface oxide plays a critical role in CO2 activation by Cu (111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc Natl Acad Sci U S A. 2017;114(26):6706–11.
CAS
PubMed
PubMed Central
Google Scholar
Lum YW, Ager JW. Stability of residual oxides in oxide-derived copper catalysts for electrochemical CO2 reduction investigated with O-18 labeling. Angew Chem Int Ed. 2018;57(2):551–4.
Article
CAS
Google Scholar
Clark EL, Hahn C, Jaramillo TF, Bell AT. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J Am Chem Soc. 2017;139(44):15848–57.
Article
CAS
PubMed
Google Scholar
Kim D, Resasco J, Yu Y, Asiri AM, Yang PD. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun. 2014;5:4948.
Article
CAS
PubMed
Google Scholar
Kim D, Xie CL, Becknell N, Yu Y, Karamad M, Chan K, Crumlin EJ, Norskov JK, Yang PD. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc. 2017;139(24):8329–36.
Article
CAS
PubMed
Google Scholar
Ma S, Sadakiyo M, Heima M, Luo R, Haasch RT, Gold JI, Yamauchi M, Kenis PJA. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J Am Chem Soc. 2017;139(1):47–50.
Article
CAS
PubMed
Google Scholar
Hirunsit P, Soodsawang W, Limtrakul J. CO2 electrochemical reduction to methane and methanol on copper-based alloys: theoretical insight. J Phys Chem C. 2015;119(15):8238–49.
Article
CAS
Google Scholar
Larrazabal GO, Martin AJ, Mitchell S, Hauert R, Perez-Ramirez J. Enhanced reduction of CO2 to CO over Cu-In electrocatalysts: catalyst evolution is the key. ACS Catal. 2016;6(9):6265–74.
Article
CAS
Google Scholar
Sarfraz S, Garcia-Esparza AT, Jedidi A, Cavallo L, Takanabe K. Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 2016;6(5):2842–51.
Article
CAS
Google Scholar
Kortlever R, Peters I, Koper S, Koper MTM. Electrochemical CO2 reduction to formic acid at low overpotential and with high faradaic efficiency on carbon-supported bimetallic Pd-Pt nanoparticles. ACS Catal. 2015;5(7):3916–23.
Article
CAS
Google Scholar
Luc W, Collins C, Wang SW, Xin HL, He K, Kang YJ, Jiao F. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J Am Chem Soc. 2017;139(5):1885–93.
Article
CAS
PubMed
Google Scholar
Choi SY, Jeong SK, Kim HJ, Baek IH, Park KT. Electrochemical reduction of carbon dioxide to formate on tin-lead alloys. ACS Sustain Chem Eng. 2016;4(3):1311–8.
Article
CAS
Google Scholar
Bai XF, Chen W, Zhao CC, Li SG, Song YF, Ge RP, Wei W, Sun YH. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew Chem Int Ed. 2017;56(40):12219–23.
Article
CAS
Google Scholar
Hahn C, Abram DN, Hansen HA, Hatsukade T, Jackson A, Johnson NC, Hellstern TR, Kuhl KP, Cave ER, Feaster JT, et al. Synthesis of thin film AuPd alloys and their investigation for electrocatalytic CO2 reduction. J Mater Chem A. 2015;3(40):20185–94.
Article
CAS
Google Scholar
Liu X, Dai LM. Carbon-based metal-free catalysts. Nat Rev Mater. 2016;1(11):16064.
Article
CAS
Google Scholar
Asefa T. Metal-free and noble metal-free heteroatom-doped nanostructured carbons as prospective sustainable electrocatalysts. Acc Chem Res. 2016;49(9):1873–83.
Article
CAS
PubMed
Google Scholar
Duan XC, Xu JT, Wei ZX, Ma JM, Guo SJ, Wang SY, Liu HK, Dou SX. Metal-free carbon materials for CO2 electrochemical reduction. Adv Mater. 2017;29(41):1701784.
Article
CAS
Google Scholar
Guo DH, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science. 2016;351(6271):361–5.
Article
CAS
PubMed
Google Scholar
Liu S, Yang HB, Huang X, Liu LH, Cai WZ, Gao JJ, Li XN, Zhang T, Huang YQ, Liu B. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Adv Funct Mater. 2018;28(21):1800499.
Article
CAS
Google Scholar
Xu JY, Kan YH, Huang R, Zhang BS, Wang BL, Wu KH, Lin YM, Sun XY, Li QF, Centi G, et al. Revealing the origin of activity in nitrogen-doped nanocarbons towards electrocatalytic reduction of carbon dioxide. ChemSusChem. 2016;9(10):1085–9.
Article
CAS
PubMed
Google Scholar
Wu JJ, Yadav RM, Liu MJ, Sharma PP, Tiwary CS, Ma LL, Zou XL, Zhou XD, Yakobson BI, Lou J, et al. Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano. 2015;9(5):5364–71.
Article
CAS
PubMed
Google Scholar
Sharma PP, Wu JJ, Yadav RM, Liu MJ, Wright CJ, Tiwary CS, Yakobson BI, Lou J, Ajayan PM, Zhou XD. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: on the understanding of defects, defect density, and selectivity. Angew Chem Int Ed. 2015;54(46):13701–5.
Article
CAS
Google Scholar
Wu JJ, Liu MJ, Sharma PP, Yadav RM, Ma LL, Yang YC, Zou XL, Zhou XD, Vajtai R, Yakobson BI, et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam. Nano Lett. 2016;16(1):466–70.
Article
CAS
PubMed
Google Scholar
Wu JJ, Ma SC, Sun J, Gold JI, Tiwary C, Kim B, Zhu LY, Chopra N, Odeh IN, Vajtai R, et al. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates. Nat Commun. 2016;7:13869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu YM, Chen S, Quan X, Yu HT. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc. 2015;137(36):11631–6.
Article
CAS
PubMed
Google Scholar
Li WL, Seredych M, Rodriguez-Castellon E, Bandosz TJ. Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2 to CO and CH4. ChemSusChem. 2016;9(6):606–16.
Article
CAS
PubMed
Google Scholar
Sreekanth N, Nazrulla MA, Vineesh TV, Sailaja K, Phani KL. Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chem Commun. 2015;51(89):16061–4.
Article
CAS
Google Scholar
Kim J, Kim HE, Lee H. Single-atom catalysts of precious metals for electrochemical reactions. ChemSusChem. 2018;11(1):104–13.
Article
CAS
PubMed
Google Scholar
Yang S, Kim J, Tak YJ, Soon A, Lee H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed. 2016;55(6):2058–62.
Article
CAS
Google Scholar
Choi CH, Kim M, Kwon HC, Cho SJ, Yun S, Kim HT, Mayrhofer KJJ, Kim H, Choi M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun. 2016;7:10922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deng J, Li HB, Xiao JP, Tu YC, Deng DH, Yang HX, Tian HF, Li JQ, Ren PJ, Bao XH. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci. 2015;8(5):1594–601.
Article
CAS
Google Scholar
Kim J, Roh CW, Sahoo SK, Yang S, Bae J, Han JW, Lee H. Highly durable platinum single-atom alloy catalyst for electrochemical reactions. Adv Eng Mater. 2018;8(1):1701476.
Article
CAS
Google Scholar
Yang HB, Hung SF, Liu S, Yuan KD, Miao S, Zhang LP, Huang X, Wang HY, Cai WZ, Chen R, et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat Energy. 2018;3(2):140–7.
Article
CAS
Google Scholar
Jiang K, Siahrostami S, Zheng TT, Hu YF, Hwang S, Stavitski E, Peng YD, Dynes J, Gangisetty M, Su D, et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci. 2018;11(4):893–903.
Article
CAS
Google Scholar
Jiang K, Siahrostami S, Akey AJ, Li YB, Lu ZY, Lattimer J, Hu YF, Stokes C, Gangishetty M, Chen GX, et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem. 2017;3(6):950–60.
Article
CAS
Google Scholar
Wang YF, Chen Z, Han P, Du YH, Gu ZX, Xu X, Zheng GF. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018;8(8):7113–9.
Article
CAS
Google Scholar
Backs S, Jung YS. TiC- and TiN-supported single-atom catalysts for dramatic improvements in CO2 electrochemical reduction to CH4. ACS Energy Lett. 2017;2(5):969–75.
Article
CAS
Google Scholar
Back S, Lim J, Kim NY, Kim YH, Jung Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem Sci. 2017;8(2):1090–6.
Article
CAS
PubMed
Google Scholar
Cheng MJ, Clark EL, Pham HH, Bell AT, Head-Gordon M. Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C-1 hydrocarbons. ACS Catal. 2016;6(11):7769–77.
Article
CAS
Google Scholar
Varela AS, Kroschel M, Reier T, Strasser P. Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH. Catal Today. 2016;260:8–13.
Article
CAS
Google Scholar
Resasco J, Chen LD, Clark E, Tsai C, Hahn C, Jaramillo TF, Chan K, Bell AT. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J Am Chem Soc. 2017;139(32):11277–87.
Article
CAS
PubMed
Google Scholar
Singh MR, Kwon Y, Lum Y, Ager JW, Bell AT. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J Am Chem Soc. 2016;138(39):13006–12.
Article
CAS
PubMed
Google Scholar
Verma S, Lu X, Ma SC, Masel RI, Kenis PJA. The effect of electrolyte composition on the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. Phys Chem Chem Phys. 2016;18(10):7075–84.
Article
CAS
PubMed
Google Scholar
Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI. Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science. 2011;334(6056):643–4.
Article
CAS
PubMed
Google Scholar
Asadi M, Kim K, Liu C, Addepalli AV, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato JM, Haasch R, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science. 2016;353(6298):467–70.
Article
CAS
PubMed
Google Scholar
Cole EB, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB. Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc. 2010;132(33):11539–51.
Article
PubMed
CAS
Google Scholar
Han ZJ, Kortlever R, Chen HY, Peters JC, Agapie T. CO2 reduction selective for C≥2 products on polycrystalline copper with N-substituted pyridinium additives. ACS Cent Sci. 2017;3(8):853–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim B, Hillman F, Ariyoshi M, Fujikawa S, Kenis PJA. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO. J Power Sources. 2016;312:192–8.
Article
CAS
Google Scholar