Quinn R. Rethinking antibiotic research and development: world war II and the penicillin collaborative. Am J Public Health. 2013;103(3):426–34. https://doi.org/10.2105/AJPH.2012.300693

Article
PubMed
PubMed Central
Google Scholar

Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L. Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol. 2004. https://doi.org/10.1038/nrm1451

Article
CAS
PubMed
Google Scholar

Kell DB. Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol. 2004;7(3):296–307. https://doi.org/10.1016/j.mib.2004.04.012

Article
CAS
PubMed
Google Scholar

Palsson B. The challenges of in silico biology. Nat Biotechnol. 2000;18:1147–50. https://doi.org/10.1038/81125

Article
CAS
PubMed
Google Scholar

Saha R, Liu D, Hoynes-O’Connor A, Liberton M, Yu J, Bhattacharyya-Pakrasi M, et al. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses. MBio. 2016;7(3):e00464–16. https://doi.org/10.1128/mBio.00464-16

Chowdhury R, Chowdhury A, Maranas C. Using Gene Essentiality and Synthetic Lethality Information to Correct Yeast and CHO Cell Genome-Scale Models. Metabolites. 2015;5(4):536–70. https://doi.org/10.3390/metabo5040536

Article
CAS
PubMed
PubMed Central
Google Scholar

Simons M, Saha R, Amiour N, Kumar A, Guillard L, Clément G, et al. Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model. PLANT Physiol. 2014;166(3):1659–74. https://doi.org/10.1104/pp.114.245787

Article
PubMed
PubMed Central
CAS
Google Scholar

Sarkar D, Mueller TJ, Liu D, Pakrasi HB, Maranas CD. A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism. PLoS Comput Biol. 2019. https://doi.org/10.1371/journal.pcbi.1006692

Article
PubMed
PubMed Central
CAS
Google Scholar

Fell DA, Small JR. Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem J. 1986.

Savinell JM, Palsson BO. Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J Theor Biol. 1992;154:421–54. https://doi.org/10.1016/S0022-5193(05)80161-4

Article
CAS
PubMed
Google Scholar

Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010;28(3):245–8. https://doi.org/10.1038/nbt.1614

Article
CAS
PubMed
PubMed Central
Google Scholar

Edwards JS, Palsson BO. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics. 2000. https://doi.org/10.1186/1471-2105-1-1

Article
CAS
PubMed
PubMed Central
Google Scholar

Alper H, Jin YS, Moxley JF, Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in *Escherichia coli*. Metab Eng. 2005;7:155–64. https://doi.org/10.1016/j.ymben.2004.12.003

Article
CAS
PubMed
Google Scholar

Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng. 2008. https://doi.org/10.1016/j.ymben.2007.08.003

Article
CAS
PubMed
Google Scholar

Vallino JJ, Stephanopoulos G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng. 2000;41:633–46. https://doi.org/10.1002/(SICI)1097-0290(20000320)67:6<872::AID-BIT21>3.0.CO;2-X

Xie L, Wang DIC. Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotechnol Bioeng. 2006;95:270–84. https://doi.org/10.1002/bit.21160

Article
CAS
PubMed
Google Scholar

Varma A, Palsson BO. Predictions for oxygen supply control to enhance population stability of engineered production strains. Biotechnol Bioeng. 1994;43:275–85. https://doi.org/10.1002/bit.260430403

Article
CAS
PubMed
Google Scholar

Fong SS, Palsson B. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet. 2004;36:1056–8. https://doi.org/10.1038/ng1432

Article
CAS
PubMed
Google Scholar

Varma A, Boesch BW, Palsson BO. Stoichiometric interpretation of *Escherichia coli* glucose catabolism under various oxygenation rates. Appl Environ Microbiol. 1993.

Bajpai R. Control of bacterial fermentations. Ann N Y Acad Sci. 1987;506:446–58. https://doi.org/10.1111/j.1749-6632.1987.tb23840.x

Article
CAS
PubMed
Google Scholar

Majewski RA, Domach MM. Simple constrained-optimization view of acetate overflow in *E. coli*. Biotechnol Bioeng. 1990;35:732–8. https://doi.org/10.1002/bit.260350711

Article
CAS
PubMed
Google Scholar

Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol. 1994.

Edwards JS, Ibarra RU, Palsson BO. In silico predictions of *Escherichia coli* metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2001;19:125–30. https://doi.org/10.1038/84379

Article
CAS
PubMed
Google Scholar

Machado D, Costa RS, Ferreira EC, Rocha I, Tidor B. Exploring the gap between dynamic and constraint-based models of metabolism. Metab Eng. 2012;14:112–9. https://doi.org/10.1016/j.ymben.2012.01.003

Article
CAS
PubMed
PubMed Central
Google Scholar

Smallbone K, Simeonidis E, Broomhead DS, Kell DB. Something from nothing - Bridging the gap between constraint-based and kinetic modelling. FEBS J. 2007;274:5576–85. https://doi.org/10.1111/j.1742-4658.2007.06076.x

Article
CAS
PubMed
Google Scholar

Mahadevan R, Edwards JS, Doyle FJ 3rd. Dynamic flux balance analysis of diauxic growth in *Escherichia coli*. Biophys J. 2002;83:1331–40. https://doi.org/10.1016/S0006-3495(02)73903-9

Article
CAS
PubMed
PubMed Central
Google Scholar

Vargas FA, Pizarro F, Pérez-Correa JR, Agosin E. Expanding a dynamic flux balance model of yeast fermentation to genome-scale. BMC Syst Biol. 2011;5:75. https://doi.org/10.1186/1752-0509-5-75

Article
CAS
PubMed
PubMed Central
Google Scholar

Steuer R, Gross T, Selbig J, Blasius B. Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci. 2006;103:11868–73. https://doi.org/10.1073/pnas.0600013103

Article
CAS
Google Scholar

Grimbs S, Selbig J, Bulik S, Holzhütter HG, Steuer R. The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks. Mol Syst Biol. 2007;3:146. https://doi.org/10.1038/msb4100186

Article
PubMed
PubMed Central
CAS
Google Scholar

Flassig RJ, Fachet M, Höffner K, Barton PI, Sundmacher K. Dynamic flux balance modeling to increase the production of high-value compounds in green microalgae. Biotechnol Biofuels. 2016;9:165. https://doi.org/10.1186/s13068-016-0556-4

Hanly TJ, Tiernan AR, Henson MA. Validation and optimization of a yeast dynamic flux balance model using a parallel bioreactor system. In: IFAC Proceedings Volumes (IFAC-PapersOnline); 2013, p. 113–8. https://doi.org/10.3182/20131216-3-IN-2044.00002

Article
Google Scholar

Gadkar KG, Doyle FJ, Edwards JS, Mahadevan R. Estimating optimal profiles of genetic alterations using constraint-based models. Biotechnol Bioeng. 2005;89:243–51. https://doi.org/10.1002/bit.20349

Article
CAS
Google Scholar

Serrano-Bermúdez L, Barrios AFG, Montoya D. Clostridium butyricum population balance model: predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content. PLoS One. 2018;13. https://doi.org/10.1371/journal.pone.0209447

Article
PubMed
PubMed Central
Google Scholar

Pozo C, Miró A, Guillén-Gosálbez G, Sorribas A, Alves R, Jiménez L. Gobal optimization of hybrid kinetic/FBA models via outer-approximation. Comput Chem Eng. 2015;72:325–33. https://doi.org/10.1016/j.compchemeng.2014.06.011

Article
CAS
Google Scholar

Voit EO. Design principles and operating principles: the yin and yang of optimal functioning. Math Biosci. 2003;182:81–92. https://doi.org/10.1016/S0025-5564(02)00162-1

Article
PubMed
Google Scholar

Chowdhury A, Khodayari A, Maranas CD. Improving prediction fidelity of cellular metabolism with kinetic descriptions. Curr Opin Biotechnol. 2015;36:57–64. https://doi.org/10.1016/j.copbio.2015.08.011

Article
CAS
PubMed
Google Scholar

Costa RS, Machado D, Rocha I, Ferreira EC. Hybrid dynamic modeling of *Escherichia coli* central metabolic network combining Michaelis–Menten and approximate kinetic equations. Biosystems. 2010;100(2):150–7. https://doi.org/10.1016/j.biosystems.2010.03.001

Article
CAS
PubMed
Google Scholar

Tummler K, Lubitz T, Schelker M, Klipp E. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling. FEBS Journal. 2014;281:549–71. https://doi.org/10.1111/febs.12525

Article
PubMed
CAS
Google Scholar

Heijnen JJ. Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng. 2005;91:534–45. https://doi.org/10.1002/bit.20558

Article
CAS
PubMed
Google Scholar

Beard DA. Simulation of cellular biochemical system kinetics. Wiley Interdiscip Rev Syst Biol Med. 2011;3:136–46. https://doi.org/10.1002/wsbm.116

PubMed
Google Scholar

Teusink B, Passarge J, Reijenga CA, Esgalhado E, Van Der Weijden CC, Schepper M, et al. Can yeast glycolysis be understood terms of vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem. 2000;267:5313–29. https://doi.org/10.1046/j.1432-1327.2000.01527.x

Article
CAS
PubMed
Google Scholar

Liebermeister W, Klipp E. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model. 2006;3:41. https://doi.org/10.1186/1742-4682-3-41

Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W. Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks. PLoS One. 2013;8(11):e79195. https://doi.org/10.1371/journal.pone.0079195

Article
PubMed
PubMed Central
CAS
Google Scholar

Murabito E, Smallbone K, Swinton J, Westerhoff HV, Steuer R. A probabilistic approach to identify putative drug targets in biochemical networks. J R Soc Interface. 2011;8:880–95. https://doi.org/10.1098/rsif.2010.0540

Article
PubMed Central
CAS
PubMed
Google Scholar

Mišković L, Hatzimanikatis V. Modeling of uncertainties in biochemical reactions. Biotechnol Bioeng. 2011;108:413–23. https://doi.org/10.1002/bit.22932

Article
CAS
Google Scholar

Janasch M, Asplund-Samuelsson J, Steuer R, Hudson EP. Kinetic modeling of the Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation. J Exp Bot. 2019;70(3):973–83. https://doi.org/10.1093/jxb/ery382

Rohwer JM. Kinetic modelling of plant metabolic pathways. J Exp Bot. 2012;63(6):2275–92. https://doi.org/10.1093/jxb/ers080

Article
CAS
PubMed
Google Scholar

Wang L, Birol I, Hatzimanikatis V. Metabolic Control Analysis under Uncertainty: Framework Development and Case Studies. Biophys J. 2004;87(6):3750–63. https://doi.org/10.1529/biophysj.104.048090

Article
CAS
PubMed
PubMed Central
Google Scholar

Hameri T, Fengos G, Ataman M, Miskovic L, Hatzimanikatis V. Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations. Metab Eng. 2019;52:29–41. https://doi.org/10.1016/j.ymben.2018.10.005

Article
CAS
PubMed
Google Scholar

Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol J. 2013;8(9):1043–57. https://doi.org/10.1002/biot.201300091

Article
CAS
PubMed
Google Scholar

Steuer R, Gross T, Selbig J, Blasius B. Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci U S A. 2006;103(32):11868–73. https://doi.org/10.1073/pnas.0600013103

Article
CAS
Google Scholar

Khodayari A, Maranas CD. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat Commun. 2016.

Tan Y, Lafontaine Rivera JG, Contador CA, Asenjo JA, Liao JC. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metab Eng. 2011;13(1):60–75. https://doi.org/10.1016/J.YMBEN.2010.11.001

Article
CAS
PubMed
Google Scholar

Zomorrodi AR, Lafontaine Rivera JG, Liao JC, Maranas CD. Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks. Biotechnol J. 2013;8(9):1090–104. https://doi.org/10.1002/biot.201200270

Article
CAS
PubMed
Google Scholar

Tran LM, Rizk ML, Liao JC. Ensemble Modeling of Metabolic Networks. Biophys J. 2008;95(12):5606–17. https://doi.org/10.1529/biophysj.108.135442

Article
CAS
PubMed
PubMed Central
Google Scholar

Gopalakrishnan S, Dash S, Maranas C. K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data. bioRxiv. 2019. https://doi.org/10.1101/612994

Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol. 2017;35:904–8. https://doi.org/10.1038/nbt.3956

Article
CAS
PubMed
PubMed Central
Google Scholar

Atlas JC, Nikolaev EV, Browning ST, Shuler ML. Incorporating genome-wide DNA sequence information into a dynamic whole-cell model of *Escherichia coli*: application to DNA replication. IET Syst Biol. 2008, p. 369–82. https://doi.org/10.1049/iet-syb:20070079

Article
CAS
PubMed
Google Scholar

Karr JR, Sanghvi JC, MacKlin DN, Gutschow MV, Jacobs JM, Bolival B, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012. https://doi.org/10.1016/j.cell.2012.05.044

Article
CAS
PubMed
PubMed Central
Google Scholar

Szigeti B, Roth YD, Sekar JAP, Goldberg AP, Pochiraju SC, Karr JR. A blueprint for human whole-cell modeling. Curr Opin Syst Biol. 2018;7:8–15. https://doi.org/10.1016/j.coisb.2017.10.005

Article
PubMed
Google Scholar

Goldberg AP, Chew YH, Karr JR. Toward scalable whole-cell modeling of human cells. In: SIGSIM-PADS 2016 - Proceedings of the 2016 Annual ACM Conference on Principles of Advanced Discrete Simulation; 2016. https://doi.org/10.1145/2901378.2901402

Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Olín-Sandoval V. Metabolic Control Analysis: A tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol. 2008:1–30. https://doi.org/10.1155/2008/597913

Article
CAS
Google Scholar

Kacser H, Burns JA, Kacser H, Fell DA. The control of flux: 21 years on. Biochem Soc Trans. 1995. https://doi.org/10.1042/bst0230341

Article
CAS
PubMed
Google Scholar

Saavedra E, Marín-Hernández A, Encalada R, Olivos A, Mendoza-Hernández G, Moreno-Sánchez R. Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica. FEBS J. 2007;274:4922–40. https://doi.org/10.1111/j.1742-4658.2007.06012.x

Article
CAS
PubMed
Google Scholar

Saavedra E, Encalada R, Pineda E, Jasso-Chávez R, Moreno-Sánchez R. Glycolysis in Entamoeba histolytica: biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J. 2005;272:1767–83. https://doi.org/10.1111/j.1742-4658.2005.04610.x

Article
CAS
PubMed
Google Scholar

Park JO, Rubin SA, Xu YF, Amador-Noguez D, Fan J, Shlomi T, et al. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat Chem Biol. 2016;12:482–9. https://doi.org/10.1038/nchembio.2077

Article
CAS
PubMed
PubMed Central
Google Scholar

Farquhar GD. Models describing the kinetics of ribulose biphosphate carboxylase-oxygenase. Arch Biochem Biophys. 1979;193:456–68. https://doi.org/10.1016/0003-9861(79)90052-3

Article
CAS
PubMed
Google Scholar

Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput Biol. 2014;10:e1003483. https://doi.org/10.1371/journal.pcbi.1003483

Article
PubMed
PubMed Central
CAS
Google Scholar

Yang X, Yuan Q, Luo H, Li F, Mao Y, Zhao X, et al. Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metab Eng. 2019;56:142–53. https://doi.org/10.1016/j.ymben.2019.09.001

Article
CAS
PubMed
Google Scholar

Jacobson TB, Adamczyk PA, Stevenson DM, Regner M, Ralph J, Reed JL, et al. 2H and 13C metabolic flux analysis elucidates in vivo thermodynamics of the ED pathway in Zymomonas mobilis. Metab Eng. 2019;54:301–16. https://doi.org/10.1016/j.ymben.2019.05.006

Article
CAS
PubMed
Google Scholar

Heyland J, Fu J, Blank LM. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology. 2009;155:3827–37. https://doi.org/10.1099/mic.0.030213-0

Article
CAS
PubMed
Google Scholar

Dash S, Olson DG, Joshua SH, Amador-Noguez D, Lynd LR, Maranas CD. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Metab Eng. 2019;55:161–9.

Article
CAS
PubMed
Google Scholar

Zheng T, Olson DG, Tian L, Bomble YJ, Himmel ME, Lo J, et al. Cofactor specificity of the Bifunctional alcohol and aldehyde dehydrogenase (AdhE) in wild-type and mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol. 2015;2610–2619:197. https://doi.org/10.1128/jb.00232-15

Article
CAS
PubMed
PubMed Central
Google Scholar

Noor E, Flamholz A, Bar-Even A, Davidi D, Milo R, Liebermeister W. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization. PLoS Comput Biol. 2016;12:e1005167. https://doi.org/10.1371/JOURNAL.PCBI.1005167

Article
PubMed
PubMed Central
CAS
Google Scholar

Haverkorn Van Rijsewijk BRB, Nanchen A, Nallet S, Kleijn RJ, Sauer U. Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in *Escherichia coli*. Mol Syst Biol. 2011. https://doi.org/10.1038/msb.2011.9

Article
PubMed
PubMed Central
CAS
Google Scholar

Liebermeister W, Uhlendorf J, Klipp E. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics. 2010;26:1528–34. https://doi.org/10.1093/bioinformatics/btq141

Article
CAS
PubMed
Google Scholar

Wortel MT, Peters H, Hulshof J, Teusink B, Bruggeman FJ. Metabolic states with maximal specific rate carry flux through an elementary flux mode. FEBS J. 2014;281:1547–55. https://doi.org/10.1111/febs.12722

Article
CAS
PubMed
Google Scholar

Klamt S, Stelling J. Combinatorial complexity of pathway analysis in metabolic networks. Mol Biol Rep. 2002. https://doi.org/10.1023/A:1020390132244

Article
CAS
PubMed
Google Scholar

Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U. Multidimensional optimality of microbial metabolism. Science. 2012;336:601–4. https://doi.org/10.1126/science.1216882

Article
CAS
PubMed
Google Scholar

Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol. 2011;7:445–52. https://doi.org/10.1038/nchembio.580

Article
CAS
PubMed
Google Scholar

Vu TT, Hill EA, Kucek LA, Konopka AE, Beliaev AS, Reed JL. Computational evaluation of *Synechococcus* sp. PCC 7002 metabolism for chemical production. Biotechnol J. 2013;8(5):619–30. https://doi.org/10.1002/biot.201200315

Article
CAS
PubMed
Google Scholar

Suástegui M, Yu Ng C, Chowdhury A, Sun W, Cao M, House E, et al. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in *Saccharomyces cerevisiae* for high production of polymer and drug precursors. Metab Eng. 2017;42:134–44. https://doi.org/10.1016/j.ymben.2017.06.008

Article
PubMed
CAS
Google Scholar

Dai Z, Locasale JW. Thermodynamic constraints on the regulation of metabolic fluxes. J Biol Chem. 2018;293(51):19725–39. https://doi.org/10.1074/jbc.RA118.004372

Article
CAS
PubMed
PubMed Central
Google Scholar

Chiu HC, Levy R, Borenstein E. Emergent Biosynthetic Capacity in Simple Microbial Communities. PLoS Comput Biol. 2014;10:e1003695. https://doi.org/10.1371/journal.pcbi.1003695

Article
PubMed
PubMed Central
CAS
Google Scholar

Klitgord N, Segrè D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol. 2010;6:e1001002. https://doi.org/10.1371/journal.pcbi.1001002

Article
PubMed
PubMed Central
CAS
Google Scholar

Cases I, De Lorenzo V. Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. In: International Microbiology; 2005.

Google Scholar

Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs. 2005.