Quinn R. Rethinking antibiotic research and development: world war II and the penicillin collaborative. Am J Public Health. 2013;103(3):426–34. https://doi.org/10.2105/AJPH.2012.300693
Article
PubMed
PubMed Central
Google Scholar
Fernie AR, Trethewey RN, Krotzky AJ, Willmitzer L. Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol. 2004. https://doi.org/10.1038/nrm1451
Article
CAS
PubMed
Google Scholar
Kell DB. Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol. 2004;7(3):296–307. https://doi.org/10.1016/j.mib.2004.04.012
Article
CAS
PubMed
Google Scholar
Palsson B. The challenges of in silico biology. Nat Biotechnol. 2000;18:1147–50. https://doi.org/10.1038/81125
Article
CAS
PubMed
Google Scholar
Saha R, Liu D, Hoynes-O’Connor A, Liberton M, Yu J, Bhattacharyya-Pakrasi M, et al. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses. MBio. 2016;7(3):e00464–16. https://doi.org/10.1128/mBio.00464-16
Chowdhury R, Chowdhury A, Maranas C. Using Gene Essentiality and Synthetic Lethality Information to Correct Yeast and CHO Cell Genome-Scale Models. Metabolites. 2015;5(4):536–70. https://doi.org/10.3390/metabo5040536
Article
CAS
PubMed
PubMed Central
Google Scholar
Simons M, Saha R, Amiour N, Kumar A, Guillard L, Clément G, et al. Assessing the Metabolic Impact of Nitrogen Availability Using a Compartmentalized Maize Leaf Genome-Scale Model. PLANT Physiol. 2014;166(3):1659–74. https://doi.org/10.1104/pp.114.245787
Article
PubMed
PubMed Central
CAS
Google Scholar
Sarkar D, Mueller TJ, Liu D, Pakrasi HB, Maranas CD. A diurnal flux balance model of Synechocystis sp. PCC 6803 metabolism. PLoS Comput Biol. 2019. https://doi.org/10.1371/journal.pcbi.1006692
Article
PubMed
PubMed Central
CAS
Google Scholar
Fell DA, Small JR. Fat synthesis in adipose tissue. An examination of stoichiometric constraints. Biochem J. 1986.
Savinell JM, Palsson BO. Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J Theor Biol. 1992;154:421–54. https://doi.org/10.1016/S0022-5193(05)80161-4
Article
CAS
PubMed
Google Scholar
Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010;28(3):245–8. https://doi.org/10.1038/nbt.1614
Article
CAS
PubMed
PubMed Central
Google Scholar
Edwards JS, Palsson BO. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics. 2000. https://doi.org/10.1186/1471-2105-1-1
Article
CAS
PubMed
PubMed Central
Google Scholar
Alper H, Jin YS, Moxley JF, Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng. 2005;7:155–64. https://doi.org/10.1016/j.ymben.2004.12.003
Article
CAS
PubMed
Google Scholar
Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng. 2008. https://doi.org/10.1016/j.ymben.2007.08.003
Article
CAS
PubMed
Google Scholar
Vallino JJ, Stephanopoulos G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng. 2000;41:633–46. https://doi.org/10.1002/(SICI)1097-0290(20000320)67:6<872::AID-BIT21>3.0.CO;2-X
Xie L, Wang DIC. Fed-batch cultivation of animal cells using different medium design concepts and feeding strategies. Biotechnol Bioeng. 2006;95:270–84. https://doi.org/10.1002/bit.21160
Article
CAS
PubMed
Google Scholar
Varma A, Palsson BO. Predictions for oxygen supply control to enhance population stability of engineered production strains. Biotechnol Bioeng. 1994;43:275–85. https://doi.org/10.1002/bit.260430403
Article
CAS
PubMed
Google Scholar
Fong SS, Palsson B. Metabolic gene-deletion strains of Escherichia coli evolve to computationally predicted growth phenotypes. Nat Genet. 2004;36:1056–8. https://doi.org/10.1038/ng1432
Article
CAS
PubMed
Google Scholar
Varma A, Boesch BW, Palsson BO. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol. 1993.
Bajpai R. Control of bacterial fermentations. Ann N Y Acad Sci. 1987;506:446–58. https://doi.org/10.1111/j.1749-6632.1987.tb23840.x
Article
CAS
PubMed
Google Scholar
Majewski RA, Domach MM. Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol Bioeng. 1990;35:732–8. https://doi.org/10.1002/bit.260350711
Article
CAS
PubMed
Google Scholar
Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol. 1994.
Edwards JS, Ibarra RU, Palsson BO. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol. 2001;19:125–30. https://doi.org/10.1038/84379
Article
CAS
PubMed
Google Scholar
Machado D, Costa RS, Ferreira EC, Rocha I, Tidor B. Exploring the gap between dynamic and constraint-based models of metabolism. Metab Eng. 2012;14:112–9. https://doi.org/10.1016/j.ymben.2012.01.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Smallbone K, Simeonidis E, Broomhead DS, Kell DB. Something from nothing - Bridging the gap between constraint-based and kinetic modelling. FEBS J. 2007;274:5576–85. https://doi.org/10.1111/j.1742-4658.2007.06076.x
Article
CAS
PubMed
Google Scholar
Mahadevan R, Edwards JS, Doyle FJ 3rd. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J. 2002;83:1331–40. https://doi.org/10.1016/S0006-3495(02)73903-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Vargas FA, Pizarro F, Pérez-Correa JR, Agosin E. Expanding a dynamic flux balance model of yeast fermentation to genome-scale. BMC Syst Biol. 2011;5:75. https://doi.org/10.1186/1752-0509-5-75
Article
CAS
PubMed
PubMed Central
Google Scholar
Steuer R, Gross T, Selbig J, Blasius B. Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci. 2006;103:11868–73. https://doi.org/10.1073/pnas.0600013103
Article
CAS
Google Scholar
Grimbs S, Selbig J, Bulik S, Holzhütter HG, Steuer R. The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks. Mol Syst Biol. 2007;3:146. https://doi.org/10.1038/msb4100186
Article
PubMed
PubMed Central
CAS
Google Scholar
Flassig RJ, Fachet M, Höffner K, Barton PI, Sundmacher K. Dynamic flux balance modeling to increase the production of high-value compounds in green microalgae. Biotechnol Biofuels. 2016;9:165. https://doi.org/10.1186/s13068-016-0556-4
Hanly TJ, Tiernan AR, Henson MA. Validation and optimization of a yeast dynamic flux balance model using a parallel bioreactor system. In: IFAC Proceedings Volumes (IFAC-PapersOnline); 2013, p. 113–8. https://doi.org/10.3182/20131216-3-IN-2044.00002
Article
Google Scholar
Gadkar KG, Doyle FJ, Edwards JS, Mahadevan R. Estimating optimal profiles of genetic alterations using constraint-based models. Biotechnol Bioeng. 2005;89:243–51. https://doi.org/10.1002/bit.20349
Article
CAS
Google Scholar
Serrano-Bermúdez L, Barrios AFG, Montoya D. Clostridium butyricum population balance model: predicting dynamic metabolic flux distributions using an objective function related to extracellular glycerol content. PLoS One. 2018;13. https://doi.org/10.1371/journal.pone.0209447
Article
PubMed
PubMed Central
Google Scholar
Pozo C, Miró A, Guillén-Gosálbez G, Sorribas A, Alves R, Jiménez L. Gobal optimization of hybrid kinetic/FBA models via outer-approximation. Comput Chem Eng. 2015;72:325–33. https://doi.org/10.1016/j.compchemeng.2014.06.011
Article
CAS
Google Scholar
Voit EO. Design principles and operating principles: the yin and yang of optimal functioning. Math Biosci. 2003;182:81–92. https://doi.org/10.1016/S0025-5564(02)00162-1
Article
PubMed
Google Scholar
Chowdhury A, Khodayari A, Maranas CD. Improving prediction fidelity of cellular metabolism with kinetic descriptions. Curr Opin Biotechnol. 2015;36:57–64. https://doi.org/10.1016/j.copbio.2015.08.011
Article
CAS
PubMed
Google Scholar
Costa RS, Machado D, Rocha I, Ferreira EC. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis–Menten and approximate kinetic equations. Biosystems. 2010;100(2):150–7. https://doi.org/10.1016/j.biosystems.2010.03.001
Article
CAS
PubMed
Google Scholar
Tummler K, Lubitz T, Schelker M, Klipp E. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling. FEBS Journal. 2014;281:549–71. https://doi.org/10.1111/febs.12525
Article
PubMed
CAS
Google Scholar
Heijnen JJ. Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng. 2005;91:534–45. https://doi.org/10.1002/bit.20558
Article
CAS
PubMed
Google Scholar
Beard DA. Simulation of cellular biochemical system kinetics. Wiley Interdiscip Rev Syst Biol Med. 2011;3:136–46. https://doi.org/10.1002/wsbm.116
PubMed
Google Scholar
Teusink B, Passarge J, Reijenga CA, Esgalhado E, Van Der Weijden CC, Schepper M, et al. Can yeast glycolysis be understood terms of vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem. 2000;267:5313–29. https://doi.org/10.1046/j.1432-1327.2000.01527.x
Article
CAS
PubMed
Google Scholar
Liebermeister W, Klipp E. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor Biol Med Model. 2006;3:41. https://doi.org/10.1186/1742-4682-3-41
Stanford NJ, Lubitz T, Smallbone K, Klipp E, Mendes P, Liebermeister W. Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks. PLoS One. 2013;8(11):e79195. https://doi.org/10.1371/journal.pone.0079195
Article
PubMed
PubMed Central
CAS
Google Scholar
Murabito E, Smallbone K, Swinton J, Westerhoff HV, Steuer R. A probabilistic approach to identify putative drug targets in biochemical networks. J R Soc Interface. 2011;8:880–95. https://doi.org/10.1098/rsif.2010.0540
Article
PubMed Central
CAS
PubMed
Google Scholar
Mišković L, Hatzimanikatis V. Modeling of uncertainties in biochemical reactions. Biotechnol Bioeng. 2011;108:413–23. https://doi.org/10.1002/bit.22932
Article
CAS
Google Scholar
Janasch M, Asplund-Samuelsson J, Steuer R, Hudson EP. Kinetic modeling of the Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation. J Exp Bot. 2019;70(3):973–83. https://doi.org/10.1093/jxb/ery382
Rohwer JM. Kinetic modelling of plant metabolic pathways. J Exp Bot. 2012;63(6):2275–92. https://doi.org/10.1093/jxb/ers080
Article
CAS
PubMed
Google Scholar
Wang L, Birol I, Hatzimanikatis V. Metabolic Control Analysis under Uncertainty: Framework Development and Case Studies. Biophys J. 2004;87(6):3750–63. https://doi.org/10.1529/biophysj.104.048090
Article
CAS
PubMed
PubMed Central
Google Scholar
Hameri T, Fengos G, Ataman M, Miskovic L, Hatzimanikatis V. Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations. Metab Eng. 2019;52:29–41. https://doi.org/10.1016/j.ymben.2018.10.005
Article
CAS
PubMed
Google Scholar
Chakrabarti A, Miskovic L, Soh KC, Hatzimanikatis V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol J. 2013;8(9):1043–57. https://doi.org/10.1002/biot.201300091
Article
CAS
PubMed
Google Scholar
Steuer R, Gross T, Selbig J, Blasius B. Structural kinetic modeling of metabolic networks. Proc Natl Acad Sci U S A. 2006;103(32):11868–73. https://doi.org/10.1073/pnas.0600013103
Article
CAS
Google Scholar
Khodayari A, Maranas CD. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat Commun. 2016.
Tan Y, Lafontaine Rivera JG, Contador CA, Asenjo JA, Liao JC. Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metab Eng. 2011;13(1):60–75. https://doi.org/10.1016/J.YMBEN.2010.11.001
Article
CAS
PubMed
Google Scholar
Zomorrodi AR, Lafontaine Rivera JG, Liao JC, Maranas CD. Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks. Biotechnol J. 2013;8(9):1090–104. https://doi.org/10.1002/biot.201200270
Article
CAS
PubMed
Google Scholar
Tran LM, Rizk ML, Liao JC. Ensemble Modeling of Metabolic Networks. Biophys J. 2008;95(12):5606–17. https://doi.org/10.1529/biophysj.108.135442
Article
CAS
PubMed
PubMed Central
Google Scholar
Gopalakrishnan S, Dash S, Maranas C. K-FIT: An accelerated kinetic parameterization algorithm using steady-state fluxomic data. bioRxiv. 2019. https://doi.org/10.1101/612994
Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. iML1515, a knowledgebase that computes Escherichia coli traits. Nat Biotechnol. 2017;35:904–8. https://doi.org/10.1038/nbt.3956
Article
CAS
PubMed
PubMed Central
Google Scholar
Atlas JC, Nikolaev EV, Browning ST, Shuler ML. Incorporating genome-wide DNA sequence information into a dynamic whole-cell model of Escherichia coli: application to DNA replication. IET Syst Biol. 2008, p. 369–82. https://doi.org/10.1049/iet-syb:20070079
Article
CAS
PubMed
Google Scholar
Karr JR, Sanghvi JC, MacKlin DN, Gutschow MV, Jacobs JM, Bolival B, et al. A whole-cell computational model predicts phenotype from genotype. Cell. 2012. https://doi.org/10.1016/j.cell.2012.05.044
Article
CAS
PubMed
PubMed Central
Google Scholar
Szigeti B, Roth YD, Sekar JAP, Goldberg AP, Pochiraju SC, Karr JR. A blueprint for human whole-cell modeling. Curr Opin Syst Biol. 2018;7:8–15. https://doi.org/10.1016/j.coisb.2017.10.005
Article
PubMed
Google Scholar
Goldberg AP, Chew YH, Karr JR. Toward scalable whole-cell modeling of human cells. In: SIGSIM-PADS 2016 - Proceedings of the 2016 Annual ACM Conference on Principles of Advanced Discrete Simulation; 2016. https://doi.org/10.1145/2901378.2901402
Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Olín-Sandoval V. Metabolic Control Analysis: A tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol. 2008:1–30. https://doi.org/10.1155/2008/597913
Article
CAS
Google Scholar
Kacser H, Burns JA, Kacser H, Fell DA. The control of flux: 21 years on. Biochem Soc Trans. 1995. https://doi.org/10.1042/bst0230341
Article
CAS
PubMed
Google Scholar
Saavedra E, Marín-Hernández A, Encalada R, Olivos A, Mendoza-Hernández G, Moreno-Sánchez R. Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica. FEBS J. 2007;274:4922–40. https://doi.org/10.1111/j.1742-4658.2007.06012.x
Article
CAS
PubMed
Google Scholar
Saavedra E, Encalada R, Pineda E, Jasso-Chávez R, Moreno-Sánchez R. Glycolysis in Entamoeba histolytica: biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J. 2005;272:1767–83. https://doi.org/10.1111/j.1742-4658.2005.04610.x
Article
CAS
PubMed
Google Scholar
Park JO, Rubin SA, Xu YF, Amador-Noguez D, Fan J, Shlomi T, et al. Metabolite concentrations, fluxes and free energies imply efficient enzyme usage. Nat Chem Biol. 2016;12:482–9. https://doi.org/10.1038/nchembio.2077
Article
CAS
PubMed
PubMed Central
Google Scholar
Farquhar GD. Models describing the kinetics of ribulose biphosphate carboxylase-oxygenase. Arch Biochem Biophys. 1979;193:456–68. https://doi.org/10.1016/0003-9861(79)90052-3
Article
CAS
PubMed
Google Scholar
Noor E, Bar-Even A, Flamholz A, Reznik E, Liebermeister W, Milo R. Pathway thermodynamics highlights kinetic obstacles in central metabolism. PLoS Comput Biol. 2014;10:e1003483. https://doi.org/10.1371/journal.pcbi.1003483
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang X, Yuan Q, Luo H, Li F, Mao Y, Zhao X, et al. Systematic design and in vitro validation of novel one-carbon assimilation pathways. Metab Eng. 2019;56:142–53. https://doi.org/10.1016/j.ymben.2019.09.001
Article
CAS
PubMed
Google Scholar
Jacobson TB, Adamczyk PA, Stevenson DM, Regner M, Ralph J, Reed JL, et al. 2H and 13C metabolic flux analysis elucidates in vivo thermodynamics of the ED pathway in Zymomonas mobilis. Metab Eng. 2019;54:301–16. https://doi.org/10.1016/j.ymben.2019.05.006
Article
CAS
PubMed
Google Scholar
Heyland J, Fu J, Blank LM. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology. 2009;155:3827–37. https://doi.org/10.1099/mic.0.030213-0
Article
CAS
PubMed
Google Scholar
Dash S, Olson DG, Joshua SH, Amador-Noguez D, Lynd LR, Maranas CD. Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Metab Eng. 2019;55:161–9.
Article
CAS
PubMed
Google Scholar
Zheng T, Olson DG, Tian L, Bomble YJ, Himmel ME, Lo J, et al. Cofactor specificity of the Bifunctional alcohol and aldehyde dehydrogenase (AdhE) in wild-type and mutant Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol. 2015;2610–2619:197. https://doi.org/10.1128/jb.00232-15
Article
CAS
PubMed
PubMed Central
Google Scholar
Noor E, Flamholz A, Bar-Even A, Davidi D, Milo R, Liebermeister W. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization. PLoS Comput Biol. 2016;12:e1005167. https://doi.org/10.1371/JOURNAL.PCBI.1005167
Article
PubMed
PubMed Central
CAS
Google Scholar
Haverkorn Van Rijsewijk BRB, Nanchen A, Nallet S, Kleijn RJ, Sauer U. Large-scale 13C-flux analysis reveals distinct transcriptional control of respiratory and fermentative metabolism in Escherichia coli. Mol Syst Biol. 2011. https://doi.org/10.1038/msb.2011.9
Article
PubMed
PubMed Central
CAS
Google Scholar
Liebermeister W, Uhlendorf J, Klipp E. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics. 2010;26:1528–34. https://doi.org/10.1093/bioinformatics/btq141
Article
CAS
PubMed
Google Scholar
Wortel MT, Peters H, Hulshof J, Teusink B, Bruggeman FJ. Metabolic states with maximal specific rate carry flux through an elementary flux mode. FEBS J. 2014;281:1547–55. https://doi.org/10.1111/febs.12722
Article
CAS
PubMed
Google Scholar
Klamt S, Stelling J. Combinatorial complexity of pathway analysis in metabolic networks. Mol Biol Rep. 2002. https://doi.org/10.1023/A:1020390132244
Article
CAS
PubMed
Google Scholar
Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U. Multidimensional optimality of microbial metabolism. Science. 2012;336:601–4. https://doi.org/10.1126/science.1216882
Article
CAS
PubMed
Google Scholar
Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol. 2011;7:445–52. https://doi.org/10.1038/nchembio.580
Article
CAS
PubMed
Google Scholar
Vu TT, Hill EA, Kucek LA, Konopka AE, Beliaev AS, Reed JL. Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production. Biotechnol J. 2013;8(5):619–30. https://doi.org/10.1002/biot.201200315
Article
CAS
PubMed
Google Scholar
Suástegui M, Yu Ng C, Chowdhury A, Sun W, Cao M, House E, et al. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab Eng. 2017;42:134–44. https://doi.org/10.1016/j.ymben.2017.06.008
Article
PubMed
CAS
Google Scholar
Dai Z, Locasale JW. Thermodynamic constraints on the regulation of metabolic fluxes. J Biol Chem. 2018;293(51):19725–39. https://doi.org/10.1074/jbc.RA118.004372
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiu HC, Levy R, Borenstein E. Emergent Biosynthetic Capacity in Simple Microbial Communities. PLoS Comput Biol. 2014;10:e1003695. https://doi.org/10.1371/journal.pcbi.1003695
Article
PubMed
PubMed Central
CAS
Google Scholar
Klitgord N, Segrè D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol. 2010;6:e1001002. https://doi.org/10.1371/journal.pcbi.1001002
Article
PubMed
PubMed Central
CAS
Google Scholar
Cases I, De Lorenzo V. Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. In: International Microbiology; 2005.
Google Scholar
Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs. 2005.