Sholl DS, Lively RP. Seven chemical separations: to change the world: purifying mixtures without using heat would lower global energy use, emissions and pollution--and open up new routes to resources. Nature. 2016;532:435+.
Article
PubMed
Google Scholar
Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P. Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 2009;43:2317–48.
Article
CAS
PubMed
Google Scholar
Koros WJ, Lively RP. Water and beyond: expanding the spectrum of large-scale energy efficient separation processes. AICHE J. 2012;58:2624–33.
Article
CAS
Google Scholar
Ulbricht M. Advanced functional polymer membranes. Polymer. 2006;47:2217–62.
Article
CAS
Google Scholar
Karan S, Jiang Z, Livingston AG. Sub–10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science. 2015;348:1347–51.
Article
CAS
PubMed
Google Scholar
Ma X, Kumar P, Mittal N, Khlyustova A, Daoutidis P, Mkhoyan KA, et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science. 2018;361:1008–11.
Article
CAS
PubMed
Google Scholar
Chowdhury MR, Steffes J, Huey BD, McCutcheon JR. 3D printed polyamide membranes for desalination. Science. 2018;361:682–6.
Article
CAS
PubMed
Google Scholar
Jue ML, Koh D-Y, McCool BA, Lively RP. Enabling widespread use of microporous materials for challenging organic solvent separations. Chem Mater. 2017;29:9863–76.
Article
CAS
Google Scholar
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87:1051–69.
Article
CAS
Google Scholar
Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science. 2012;335:442–4.
Article
CAS
PubMed
Google Scholar
Kim HW, Yoon HW, Yoon S, Yoo BM, Ahn BK, Cho YH, et al. Selective gas transport through few-layered graphene and graphene oxide membranes. Science. 2013;342:91–6.
Article
CAS
PubMed
Google Scholar
Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angew Chem Int Ed. 2014;53:6929–32.
Article
CAS
Google Scholar
Akbari A, Sheath P, Martin ST, Shinde DB, Shaibani M, Banerjee PC, et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat Commun. 2016;7:1–12.
Article
CAS
Google Scholar
Huang L, Huang S, Venna SR, Lin H. Rightsizing Nanochannels in reduced graphene oxide membranes by solvating for dye desalination. Environ Sci Technol. 2018;52:12649–55.
Article
CAS
PubMed
Google Scholar
Ibrahim A, Lin YS. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. J Memb Sci. 2018;550:238–45.
Article
CAS
Google Scholar
Guan K, Shen J, Liu G, Zhao J, Zhou H, Jin W. Spray-evaporation assembled graphene oxide membranes for selective hydrogen transport. Sep Purif Technol. 2017;174:126–35.
Article
CAS
Google Scholar
Mansouri J, Yapit E, Chen V. Polysulfone filtration membranes with isoporous structures prepared by a combination of dip-coating and breath figure approach. J Memb Sci. 2013;444:237–51.
Article
CAS
Google Scholar
Roth WJ, Nachtigall P, Morris RE, Jir C. Two-dimensional zeolites current status and perspectives. Chem Rev. 2014;114:4807–37.
Article
CAS
PubMed
Google Scholar
Li Y, Yang W. Molecular sieve membranes: from 3D zeolites to 2D MOFs. Chinese J Catal. 2015;36:692–7.
Article
CAS
Google Scholar
Khayum MA, Kandambeth S, Mitra S, Nair SB, Das A, Nagane SS, et al. Chemically delaminated free-standing ultrathin covalent organic Nanosheets. Angew Chem Int Ed. 2016;55:15604–8.
Article
CAS
Google Scholar
Zhang H, Xiao Q, Guo X, Li N, Kumar P, Rangnekar N, et al. Open-pore two-dimensional MFI zeolite nanosheets for the fabrication of hydrocarbon-isomer-selective membranes on porous polymer supports. Angew Chem Int Ed. 2016;55:7184–7.
Article
CAS
Google Scholar
Jeon MY, Kim D, Kumar P, Lee PS, Rangnekar N, Bai P, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature. 2017;543:690–4.
Article
CAS
PubMed
Google Scholar
Chen H, Wydra J, Zhang X, Lee P-S, Wang Z, Fan W, et al. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. J Am Chem Soc. 2011;133:12390–3.
Article
CAS
PubMed
Google Scholar
Kim D, Jeon MY, Stottrup BL, Tsapatsis M. Para-xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air–water interface. Angew Chem Int Ed. 2018;57:480–5.
Article
CAS
Google Scholar
Graphene opens up to new applications. Nat Nanotechnol. 2015;10:381. https://www.nature.com/articles/nnano.2015.110#article-info.
Xu WL, Zhou F, Yu M. Tuning water nanofiltration performance of few-layered, reduced graphene oxide membranes by oxygen plasma. Ind Eng Chem Res. 2018;57:16103–9.
Article
CAS
Google Scholar
Peng Y, Li Y, Ban Y, Yang W. Two-dimensional metal–organic framework Nanosheets for membrane-based gas separation. Angew Chem Int Ed. 2017;56:9757–61.
Article
CAS
Google Scholar
Koh D-Y, Lively RP. Membranes at the limit. Nat Nanotechnol. 2015;10:385.
Article
CAS
PubMed
Google Scholar
Surwade SP, Smirnov SN, Vlassiouk IV, Unocic RR, Veith GM, Dai S, et al. Water desalination using nanoporous single-layer graphene. Nat Nanotechnol. 2015;10:459–64.
Article
CAS
PubMed
Google Scholar
Huang S, Dakhchoune M, Luo W, Oveisi E, He G, Rezaei M, et al. Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nat Commun. 2018;9:2632.
Article
PubMed
PubMed Central
CAS
Google Scholar
Agrawal KV, Benck JD, Yuan Z, Misra RP, Govind Rajan A, Eatmon Y, et al. Fabrication, pressure testing, and Nanopore formation of single-layer graphene membranes. J Phys Chem C. 2017;121:14312–21.
Article
CAS
Google Scholar
Yuan Z, Govind Rajan A, Misra RP, Drahushuk LW, Agrawal KV, Strano MS, et al. Mechanism and prediction of gas permeation through sub-nanometer graphene pores: comparison of theory and simulation. ACS Nano. 2017;11:7974–87.
Article
CAS
PubMed
Google Scholar
Liu H, Dai S, Jiang D. Permeance of H2 through porous graphene from molecular dynamics. Solid State Commun. 2013;175(176):101–5.
Article
CAS
Google Scholar
Drahushuk LW, Strano MS. Mechanisms of gas permeation through single layer graphene membranes. Langmuir. 2012;28:16671–8.
Article
CAS
PubMed
Google Scholar
Wang L, Boutilier MSH, Kidambi PR, Jang D, Hadjiconstantinou NG, Karnik R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat Nanotechnol. 2017;12:509.
Article
CAS
PubMed
Google Scholar
Tao Y, Xue Q, Liu Z, Shan M, Ling C, Wu T, et al. Tunable hydrogen separation in porous graphene membrane: first-principle and molecular dynamic simulation. ACS Appl Mater Interfaces. 2014;6:8048–58.
Article
CAS
PubMed
Google Scholar
Du H, Li J, Zhang J, Su G, Li X, Zhao Y. Separation of hydrogen and nitrogen gases with porous graphene membrane. J Phys Chem C. 2011;115:23261–6.
Article
CAS
Google Scholar
Sun C, Boutilier MSH, Au H, Poesio P, Bai B, Karnik R, et al. Mechanisms of molecular permeation through Nanoporous graphene membranes. Langmuir. 2014;30:675–82.
Article
CAS
PubMed
Google Scholar
Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science (80- ). 2017;356:eaab0530.
Article
CAS
Google Scholar
Lei W, Portehault D, Liu D, Qin S, Chen Y. Porous boron nitride nanosheets for effective water cleaning. Nat Commun. 2013;4:1777.
Article
PubMed
CAS
Google Scholar
Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26:992–1005.
Article
CAS
PubMed
Google Scholar
Ding L, Wei Y, Li L, Zhang T, Wang H, Xue J, et al. MXene molecular sieving membranes for highly efficient gas separation. Nat Commun. 2018;9:155.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen J, Liu G, Ji Y, Liu Q, Cheng L, Guan K, et al. 2D MXene Nanofilms with tunable gas transport channels. Adv Funct Mater. 2018;28:1801511.
Article
CAS
Google Scholar
Ren CE, Hatzell KB, Alhabeb M, Ling Z, Mahmoud KA, Gogotsi Y. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J Phys Chem Lett. 2015;6:4026–31.
Article
CAS
PubMed
Google Scholar
Wang J, Chen P, Shi B, Guo W, Jaroniec M, Qiao S-Z. A regularly channeled lamellar membrane for unparalleled water and organics permeation. Angew Chem Int Ed. 2018;57:6814–8.
Article
CAS
Google Scholar
Li L, Zhang T, Duan Y, Wei Y, Dong C, Ding L, et al. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. J Mater Chem A. 2018;6:11734–42.
Article
CAS
Google Scholar
Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010;10:3209–15.
Article
CAS
PubMed
Google Scholar
Chen Y, Zou J, Campbell SJ, Le Caer G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl Phys Lett. 2004;84:2430–2.
Article
CAS
Google Scholar
Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, et al. Boron nitride nanotubes and Nanosheets. ACS Nano. 2010;4:2979–93.
Article
CAS
PubMed
Google Scholar
Qin S, Liu D, Wang G, Portehault D, Garvey CJ, Gogotsi Y, et al. High and stable ionic conductivity in 2D Nanofluidic ion channels between boron nitride layers. J Am Chem Soc. 2017;139:6314–20.
Article
CAS
PubMed
Google Scholar
Kostoglou N, Polychronopoulou K, Rebholz C. Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum. 2015;112:42–5.
Article
CAS
Google Scholar
Lin Y, Connell JW. Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale. 2012;4:6908–39.
Article
CAS
PubMed
Google Scholar
Sutter P, Lahiri J, Albrecht P, Sutter E. Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films. ACS Nano. 2011;5:7303–9.
Article
CAS
PubMed
Google Scholar
Chen C, Wang J, Liu D, Yang C, Liu Y, Ruoff RS, et al. Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat Commun. 2018;9:1902.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu D, He L, Lei W, Klika KD, Kong L, Chen Y. Multifunctional polymer/porous boron nitride Nanosheet membranes for superior trapping emulsified oils and organic molecules. Adv Mater Interfaces. 2015;2:1500228.
Article
CAS
Google Scholar
Deng M, Kwac K, Li M, Jung Y, Park HG. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide. Nano Lett. 2017;17:2342–8.
Article
CAS
PubMed
Google Scholar
Tan C, Cao X, Wu XJ, He Q, Yang J, Zhang X, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117:6225–331.
Article
CAS
PubMed
Google Scholar
Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem Soc Rev. 2015;44:2702–12.
Article
CAS
PubMed
Google Scholar
Hirunpinyopas W, Prestat E, Worrall SD, Haigh SJ, Dryfe RAW, Bissett MA. Desalination and nanofiltration through functionalized laminar MoS2 membranes. ACS Nano. 2017;11:11082–90.
Article
CAS
PubMed
Google Scholar
Heiranian M, Farimani AB, Aluru NR. Water desalination with a single-layer MoS2 nanopore. Nat Commun. 2015;6:8616.
Article
CAS
PubMed
Google Scholar
Wang Z, Tu Q, Zheng S, Urban JJ, Li S, Mi B. Understanding the aqueous stability and filtration capability of MoS2 membranes. Nano Lett. 2017;17:7289–98.
Article
CAS
PubMed
Google Scholar
Chen D, Ying W, Guo Y, Ying Y, Peng X. Enhanced gas separation through Nanoconfined ionic liquid in laminated MoS2 membrane. ACS Appl Mater Interfaces. 2017;9:44251–7.
Article
CAS
PubMed
Google Scholar
Li M-N, Sun X-F, Wang L, Wang S-Y, Afzal MZ, Song C, et al. Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties. Desalination. 2018;436:107–13.
Article
CAS
Google Scholar
Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, et al. Development of a Cambridge structural database subset: a collection of metal–organic frameworks for past, present, and future. Chem Mater. 2017;29:2618–25.
Article
CAS
Google Scholar
Gomez DA, Toda J, Sastre G. Screening of hypothetical metal–organic frameworks for H2 storage. Phys Chem Chem Phys. 2014;16:19001–10.
Article
CAS
PubMed
Google Scholar
Yan R, Zhao Y, Yang H, Kang X-J, Wang C, Wen L-L, et al. Ultrasmall au nanoparticles embedded in 2D mixed-ligand metal–organic framework Nanosheets exhibiting highly efficient and size-selective catalysis. Adv Funct Mater. 2018;28:1802021.
Article
CAS
Google Scholar
Li Y-H, Wang S-L, Su Y-C, Ko B-T, Tsai C-Y, Lin C-H. Microporous 2D indium metal–organic frameworks for selective CO2 capture and their application in the catalytic CO2-cycloaddition of epoxides. Dalt Trans. 2018;47:9474–81.
Article
CAS
Google Scholar
Kondo A, Noguchi H, Carlucci L, Proserpio DM, Ciani G, Kajiro H, et al. Double−step gas sorption of a two−dimensional metal−organic framework. J Am Chem Soc. 2007;129:12362–3.
Article
CAS
PubMed
Google Scholar
Zhai F, Zheng Q, Chen Z, Ling Y, Liu X, Weng L, et al. Crystal transformation synthesis of a highly stable phosphonate MOF for selective adsorption of CO2. CrystEngComm. 2013;15:2040–3.
Article
CAS
Google Scholar
Hu X-L, Liu F-H, Qin C, Shao K-Z, Su Z-M. A 2D bilayered metal–organic framework as a fluorescent sensor for highly selective sensing of nitro explosives. Dalt Trans. 2015;44:7822–7.
Article
CAS
Google Scholar
Rachuri Y, Parmar B, Bisht KK, Suresh E. Mixed ligand two dimensional Cd (ii)/Ni (ii) metal organic frameworks containing dicarboxylate and tripodal N-donor ligands: Cd (ii) MOF is an efficient luminescent sensor for detection of picric acid in aqueous media. Dalt Trans. 2016;45:7881–92.
Article
CAS
Google Scholar
Xu G, Yamada T, Otsubo K, Sakaida S, Kitagawa H. Facile “modular assembly” for fast construction of a highly oriented crystalline MOF Nanofilm. J Am Chem Soc. 2012;134:16524–7.
Article
CAS
PubMed
Google Scholar
Abhervé A, Mañas-Valero S, Clemente-León M, Coronado E. Graphene related magnetic materials: micromechanical exfoliation of 2D layered magnets based on bimetallic anilate complexes with inserted [FeIII (acac2-trien)]+ and [FeIII (sal2-trien)]+ molecules. Chem Sci. 2015;6:4665–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ashworth DJ, Foster JA. Metal-organic framework nanosheets (MONs): a new dimension in materials chemistry. J Mater Chem A. 2018;6:16292–307.
Article
CAS
Google Scholar
Yuan Y, Wang W, Qiu L, Peng F, Jiang X, Xie A, et al. Surfactant-assisted facile synthesis of fluorescent zinc benzenedicarboxylate metal-organic framework nanorods with enhanced nitrobenzene explosives detection. Mater Chem Phys. 2011;131:358–61.
Article
CAS
Google Scholar
Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, et al. Ultrathin 2D metal-organic framework Nanosheets. Adv Mater. 2015;27:7372–8.
Article
CAS
PubMed
Google Scholar
Pham M-H, Vuong G-T, Fontaine F-G, Do T-O. Rational synthesis of metal–organic framework Nanocubes and Nanosheets using selective modulators and their morphology-dependent gas-sorption properties. Cryst Growth Des. 2012;12:3091–5.
Article
CAS
Google Scholar
Cao F, Zhao M, Yu Y, Chen B, Huang Y, Yang J, et al. Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal–organic framework Nanosheets as precursors for supercapacitor application. J Am Chem Soc. 2016;138:6924–7.
Article
CAS
PubMed
Google Scholar
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–9.
Article
CAS
PubMed
Google Scholar
Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science. 2014;346:1356–9.
Article
CAS
PubMed
Google Scholar
Cliffe MJ, Castillo-Martínez E, Wu Y, Lee J, Forse AC, Firth FCN, et al. Metal–organic Nanosheets formed via defect-mediated transformation of a hafnium metal–organic framework. J Am Chem Soc. 2017;139:5397–404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu M, Yuan S, Chen X-Y, Chang Y-J, Day G, Gu Z-Y, et al. Two-dimensional metal–organic framework Nanosheets as an enzyme inhibitor: modulation of the α-chymotrypsin activity. J Am Chem Soc. 2017;139:8312–9.
Article
CAS
PubMed
Google Scholar
Backes C, Higgins TM, Kelly A, Boland C, Harvey A, Hanlon D, et al. Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem Mater. 2017;29:243–55.
Article
CAS
Google Scholar
Wang X, Chi C, Zhang K, Qian Y, Gupta KM, Kang Z, et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat Commun. 2017;8:1–10.
Article
CAS
Google Scholar
Kandambeth S, Biswal BP, Chaudhari HD, Rout KC, Kunjattu HS, Mitra S, et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes. Adv Mater. 2017;29:1–9.
Article
CAS
Google Scholar
Zhang W, Zhang L, Zhao H, Li B, Ma H. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. J Mater Chem A. 2018;6:13331–9.
Article
CAS
Google Scholar
Shinde DB, Sheng G, Li X, Ostwal M, Emwas A-H, Huang K-W, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent Nanofiltration. J Am Chem Soc. 2018;140:14342–9.
Article
CAS
PubMed
Google Scholar
Gadwal I, Sheng G, Thankamony RL, Liu Y, Li H, Lai Z. Synthesis of Sub-10 nm two-dimensional covalent organic thin film with sharp molecular sieving Nanofiltration. ACS Appl Mater Interfaces. 2018;10:12295–9.
Article
CAS
PubMed
Google Scholar
Zhang K, He Z, Gupta KM, Jiang J. Computational design of 2D functional covalent–organic framework membranes for water desalination. Environ Sci Water Res Technol. 2017;3:735–43.
Article
CAS
Google Scholar
Li G, Zhang K, Tsuru T. Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF Nanosheets. ACS Appl Mater Interfaces. 2017;9:8433–6.
Article
CAS
PubMed
Google Scholar
Tong M, Yang Q, Ma Q, Liu D, Zhong C. Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study. J Mater Chem A. 2016;4:124–31.
Article
CAS
Google Scholar
Hegab HM, Zou L. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J Memb Sci. 2015;484:95–106.
Article
CAS
Google Scholar
Hong T-K, Lee DW, Choi HJ, Shin HS, Kim B-S. Transparent, flexible conducting hybrid multilayer thin films of multiwalled carbon nanotubes with graphene Nanosheets. ACS Nano. 2010;4:3861–8.
Article
CAS
PubMed
Google Scholar
Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I. Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir. 2003;19:6050–5.
Article
CAS
Google Scholar
Cheng HKF, Sahoo NG, Tan YP, Pan Y, Bao H, Li L, et al. Poly (vinyl alcohol) nanocomposites filled with poly (vinyl alcohol)-grafted graphene oxide. ACS Appl Mater Interfaces. 2012;4:2387–94.
Article
CAS
PubMed
Google Scholar
Matsuo Y, Fukunaga T, Fukutsuka T, Sugie Y. Silylation of graphite oxide; 2004. https://doi.org/10.1016/j.carbon.2004.03.024.
Book
Google Scholar
Choi W, Choi J, Bang J, Lee J-H. Layer-by-layer assembly of graphene oxide Nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl Mater Interfaces. 2013;5:12510–9.
Article
CAS
PubMed
Google Scholar
Nam YT, Choi J, Kang KM, Kim DW, Jung H-T. Enhanced stability of laminated graphene oxide membranes for Nanofiltration via interstitial amide bonding. ACS Appl Mater Interfaces. 2016;8:27376–82.
Article
CAS
PubMed
Google Scholar
Yuan Y, Gao X, Wei Y, Wang X, Wang J, Zhang Y, et al. Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes. Desalination. 2017;405:29–39.
Article
CAS
Google Scholar
Xu Z, Zhang J, Shan M, Li Y, Li B, Niu J, et al. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Memb Sci. 2014;458:1–13.
Article
CAS
Google Scholar
Lee B, Li K, Yoon HS, Yoon J, Mok Y, Lee Y, et al. Membrane of functionalized reduced graphene oxide Nanoplates with angstrom-level channels. Sci Rep. 2016;6:28052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu M, Mi B. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J Memb Sci. 2014;469:80–7.
Article
CAS
Google Scholar
Zhao J, Zhu Y, Pan F, He G, Fang C, Cao K, et al. Fabricating graphene oxide-based ultrathin hybrid membrane for pervaporation dehydration via layer-by-layer self-assembly driven by multiple interactions. J Memb Sci. 2015;487:162–72.
Article
CAS
Google Scholar
Lian B, Deng J, Leslie G, Bustamante H, Sahajwalla V, Nishina Y, et al. Surfactant modified graphene oxide laminates for filtration. Carbon. 2017;116:240–5.
Article
CAS
Google Scholar
Sun L, Huang H, Peng X. Laminar MoS2 membranes for molecule separation. Chem Commun. 2013;49:10718–20.
Article
CAS
Google Scholar
Presolski S, Pumera M. Covalent functionalization of MoS2. Mater Today. 2016;19:140–5.
Article
CAS
Google Scholar
Chou SS, De M, Kim J, Byun S, Dykstra C, Yu J, et al. Ligand conjugation of chemically exfoliated MoS2. J Am Chem Soc. 2013;135:4584–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou L, He B, Yang Y, He Y. Facile approach to surface functionalized MoS2 nanosheets. RSC Adv. 2014;4:32570–8.
Article
CAS
Google Scholar
Zhou K, Gao R, Gui Z, Hu Y. The effective reinforcements of functionalized MoS2 nanosheets in polymer hybrid composites by sol-gel technique. Compos Part A Appl Sci Manuf. 2017;94:1–9.
Article
CAS
Google Scholar
Zhou K, Jiang S, Shi Y, Liu J, Wang B, Hu Y, et al. Multigram-scale fabrication of organic modified MoS2 nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Adv. 2014;4:40170–80.
Article
CAS
Google Scholar
Qin S, Liu D, Chen Y, Chen C, Wang G, Wang J, et al. Nanofluidic electric generators constructed from boron nitride nanosheet membranes. Nano Energy. 2018;47:368–73.
Article
CAS
Google Scholar
Li Z, Zhang Y, Chan C, Zhi C, Cheng X, Fan J. Temperature-dependent lipid extraction from membranes by boron nitride Nanosheets. ACS Nano. 2018;12:2764–72.
Article
CAS
PubMed
Google Scholar
Weber M, Koonkaew B, Balme S, Utke I, Picaud F, Iatsunskyi I, et al. Boron nitride Nanoporous membranes with high surface charge by atomic layer deposition. ACS Appl Mater Interfaces. 2017;9:16669–78.
Article
CAS
PubMed
Google Scholar
Lin Y, Williams TV, Xu T-B, Cao W, Elsayed-Ali HE, Connell JW. Aqueous dispersions of few-layered and Monolayered hexagonal boron nitride Nanosheets from sonication-assisted hydrolysis: critical role of water. J Phys Chem C. 2011;115:2679–85.
Article
CAS
Google Scholar
Kim D, Muramatsu H, Kim YA. Hydrolytic unzipping of boron nitride nanotubes in nitric acid. Nanoscale Res Lett. 2017;12:94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du M, Wu Y, Hao X. A facile chemical exfoliation method to obtain large size boron nitride nanosheets. CrystEngComm. 2013;15:1782–6.
Article
CAS
Google Scholar
Sainsbury T, Satti A, May P, Wang Z, McGovern I, Gun’ko YK, et al. Oxygen radical functionalization of boron nitride Nanosheets. J Am Chem Soc. 2012;134:18758–71.
Article
CAS
PubMed
Google Scholar
Li X, Hao X, Zhao M, Wu Y, Yang J, Tian Y, et al. Exfoliation of hexagonal boron nitride by molten hydroxides. Adv Mater. 2013;25:2200–4.
Article
CAS
PubMed
Google Scholar
Nie R, Sang R, Ma X, Zheng Y, Cheng X, Li W, et al. Copper-γ-cyclodextrin complexes immobilized on hexagonal boron nitride as an efficient catalyst in the multicomponent synthesis of 1,2,3-triazoles. J Catal. 2016;344:286–92.
Article
CAS
Google Scholar
Hou J, Li G, Yang N, Qin L, Grami ME, Zhang Q, et al. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv. 2014;4:44282–90.
Article
CAS
Google Scholar
Lei W, Mochalin VN, Liu D, Qin S, Gogotsi Y, Chen Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat Commun. 2015;6:8849.
Article
CAS
PubMed
Google Scholar
Abdikheibari S, Lei W, Dumée LF, Milne N, Baskaran K. Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride/polypiperazine amide with enhanced flux and fouling resistance. J Mater Chem A. 2018;6:12066–81.
Article
CAS
Google Scholar
Zhao J, Yang Y, Yang C, Tian Y, Han Y, Liu J, et al. A hydrophobic surface enabled salt-blocking 2D Ti3C2 MXene membrane for efficient and stable solar desalination. J Mater Chem A. 2018;6:16196–204.
Article
CAS
Google Scholar
Liu G, Shen J, Liu Q, Liu G, Xiong J, Yang J, et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination. J Memb Sci. 2018;548:548–58.
Article
CAS
Google Scholar
Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, Gogotsi Y. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) Nanosheets. Sci Rep. 2017;7:1598.
Article
PubMed
PubMed Central
CAS
Google Scholar
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–53.
Article
CAS
PubMed
Google Scholar
Srivastava P, Mishra A, Mizuseki H, Lee K-R, Singh AK. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl Mater Interfaces. 2016;8:24256–64.
Article
CAS
PubMed
Google Scholar
Ghidiu M, Lukatskaya MR, Zhao M-Q, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516:78.
CAS
PubMed
Google Scholar
Wang H, Zhang J, Wu Y, Huang H, Li G, Zhang X, et al. Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination. Appl Surf Sci. 2016;384:287–93.
Article
CAS
Google Scholar
Wang H, Zhang J, Wu Y, Huang H, Jiang Q. Chemically functionalized two-dimensional titanium carbide MXene by in situ grafting-intercalating with diazonium ions to enhance supercapacitive performance. J Phys Chem Solids. 2018;115:172–9.
Article
CAS
Google Scholar
Ling Z, Ren CE, Zhao M-Q, Yang J, Giammarco JM, Qiu J, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci. 2014;111:16676–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu X, Hao L, Zhang J, Zhang X, Wang J, Liu J. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. J Memb Sci. 2016;515:175–88.
Article
CAS
Google Scholar
Ding L, Wei Y, Wang Y, Chen H, Caro J, Wang H. A two-dimensional lamellar membrane: MXene Nanosheet stacks. Angew Chem Int Ed. 2017;56:1825–9.
Article
CAS
Google Scholar
Park S-J, Ahn W-G, Choi W, Park S-H, Lee JS, Jung HW, et al. A facile and scalable fabrication method for thin film composite reverse osmosis membranes: dual-layer slot coating. J Mater Chem A. 2017;5:6648–55.
Article
CAS
Google Scholar
Sukitpaneenit P, Chung T-S. High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production. Environ Sci Technol. 2012;46:7358–65.
Article
CAS
PubMed
Google Scholar
Li Y, Yang S, Zhang K, Van der Bruggen B. Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics. Desalination. 2019;454:48–58.
Article
CAS
Google Scholar
Dong H, Wu L, Zhang L, Chen H, Gao C. Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes. J Memb Sci. 2015;494:92–103.
Article
CAS
Google Scholar
Shen J, Zhang M, Liu G, Guan K, Jin W. Size effects of graphene oxide on mixed matrix membranes for CO2 separation. AICHE J. 2016;62:2843–52.
Article
CAS
Google Scholar
Dong G, Hou J, Wang J, Zhang Y, Chen V, Liu J. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J Memb Sci. 2016;520:860–8.
Article
CAS
Google Scholar
Shen Y, Wang H, Liu J, Zhang Y. Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture. ACS Sustain Chem Eng. 2015;3:1819–29.
Article
CAS
Google Scholar
Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R, et al. Efficient CO2 capture by functionalized graphene oxide Nanosheets as fillers to fabricate multi-Permselective mixed matrix membranes. ACS Appl Mater Interfaces. 2015;7:5528–37.
Article
CAS
PubMed
Google Scholar
Yin J, Zhu G, Deng B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination. 2016;379:93–101.
Article
CAS
Google Scholar
Ganesh BM, Isloor AM, Ismail AF. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination. 2013;313:199–207.
Article
CAS
Google Scholar
Yang D, Yang S, Jiang Z, Yu S, Zhang J, Pan F, et al. Polydimethyl siloxane-graphene nanosheets hybrid membranes with enhanced pervaporative desulfurization performance. J Memb Sci. 2015;487:152–61.
Article
CAS
Google Scholar
Li Y, Krantz WB, Chung T-S. A novel primer to prevent nanoparticle agglomeration in mixed matrix membranes. AICHE J. 2007;53:2470–5.
Article
CAS
Google Scholar
Moore TT, Koros WJ. Non-ideal effects in organic–inorganic materials for gas separation membranes. J Mol Struct. 2005;739:87–98.
Article
CAS
Google Scholar
Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat Mater. 2014;14:48.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shete M, Kumar P, Bachman JE, Ma X, Smith ZP, Xu W, et al. On the direct synthesis of Cu (BDC) MOF nanosheets and their performance in mixed matrix membranes. J Memb Sci. 2018;549:312–20.
Article
CAS
Google Scholar
Kang Z, Peng Y, Hu Z, Qian Y, Chi C, Yeo LY, et al. Mixed matrix membranes composed of two-dimensional metal-organic framework nanosheets for pre-combustion CO2capture: a relationship study of filler morphology versus membrane performance. J Mater Chem A. 2015;3:20801–10.
Article
CAS
Google Scholar
Cheng Y, Wang X, Jia C, Wang Y, Zhai L, Wang Q, et al. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4separation. J Memb Sci. 2017;539:213–23.
Article
CAS
Google Scholar
Samarasinghe SASC, Chuah CY, Yang Y, Bae T-H. Tailoring CO2/CH4 separation properties of mixed-matrix membranes via combined use of two- and three-dimensional metal-organic frameworks. J Memb Sci. 2018;557:30–7.
Article
CAS
Google Scholar
Maleski K, Mochalin VN, Gogotsi Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater. 2017;29:1632–40.
Article
CAS
Google Scholar
Han R, Ma X, Xie Y, Teng D, Zhang S. Preparation of a new 2D MXene/PES composite membrane with excellent hydrophilicity and high flux. RSC Adv. 2017;7:56204–10.
Article
CAS
Google Scholar
Han R, Xie Y, Ma X. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity. Chinese J Chem Eng. 2018. https://doi.org/10.1016/j.cjche.2018.10.005.
Eum K, Ma C, Koh D-Y, Rashidi F, Li Z, Jones CW, et al. Zeolitic Imidazolate framework membranes supported on macroporous carbon hollow fibers by fluidic processing techniques. Adv Mater Interfaces. 2017;4:1700080.
Article
CAS
Google Scholar
Koh D-Y, McCool BA, Deckman HW, Lively RP. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science. 2016;353:804–7.
Article
CAS
PubMed
Google Scholar
Li H, Song Z, Zhang X, Huang Y, Li S, Mao Y, et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science. 2013;342:95–8.
Article
CAS
PubMed
Google Scholar
Shen J, Liu G, Huang K, Chu Z, Jin W, Xu N. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano. 2016;10:3398–409.
Article
CAS
PubMed
Google Scholar
Wang D, Wang Z, Wang L, Hu L, Jin J. Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation. Nanoscale. 2015;7:17649–52.
Article
CAS
PubMed
Google Scholar
Celebi K, Buchheim J, Wyss RM, Droudian A, Gasser P, Shorubalko I, et al. Ultimate permeation across atomically thin porous graphene. Science. 2014;344:289–92.
Article
CAS
PubMed
Google Scholar
Kang Z, Peng Y, Qian Y, Yuan D, Addicoat MA, Heine T, et al. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem Mater. 2016;28:1277–85.
Article
CAS
Google Scholar
Robeson LM. The upper bound revisited. J Memb Sci. 2008;320:390–400.
Article
CAS
Google Scholar
Han B, Hu YH. MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci Eng. 2016;4:285–304.
Article
CAS
Google Scholar
Zeng Y, Zou R, Zhao Y. Covalent organic frameworks for CO2 capture. Adv Mater. 2016;28:2855–73.
Article
CAS
PubMed
Google Scholar