Anthofer MH, Wilhelm ME, Cokoja M, Kuhn FE. Valorization of Carbon Dioxide to Organic Products with Organocatalysts. In: Bhanage BM, Aria M, editors. Transformation and Utilization of Carbon Dioxide. Berlin: Springer; 2014.
Google Scholar
Höök M, Tang X. Depletion of fossil fuels and anthropogenic climate change—a review. Energy Policy. 2013;52:797–809.
Article
CAS
Google Scholar
Rafiee A, Khalilpour KR. Renewable Hybridization of Oil and Gas Supply Chains. In: Khalilpour KR, editor. Polygeneration with Polystorage for Chemical and Energy Hubs. Oxford: Academic Press; 2019. p. 331–72.
Chapter
Google Scholar
BP. Statistical review of world energy. 2019.
Google Scholar
Team E. ESRL Global Monitoring Division - Global Greenhouse Gas Reference Network. Available from: https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_trend.html. Accessed 19 Sept 2019.
Centi G, Quadrelli EA, Perathoner S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci. 2013;6(6):1711–31.
Article
CAS
Google Scholar
Alper E, Yuksel Orhan O. CO 2 utilization: developments in conversion processes. Petroleum. 2017;3(1):109–26.
Article
Google Scholar
Jiang Z, Xiao T, Kuznetsov VL, Edwards PP. Turning carbon dioxide into fuel. Philos Trans A Math Phys Eng Sci. 2010;368(1923):3343–64.
Article
CAS
PubMed
Google Scholar
Fasihi M, Efimova O, Breyer C. Techno-economic assessment of CO2 direct air capture plants. J Clean Prod. 2019;224:957–80.
Article
CAS
Google Scholar
Soltani SM, Fennell PS, Mac Dowell N. A parametric study of CO 2 capture from gas-fired power plants using monoethanolamine (MEA). Int J Greenhouse Gas Control. 2017;63:321–8.
Article
CAS
Google Scholar
Lackner K, Ziock H-J, Grimes P, editors. Carbon Dioxide Extraction From Air: Is It An Option? Presented at 24th Annual Technical Conference on Coal Utilization and Fuel Systems; 8-11 March 1999; Clearwater, Florida, USA.
Bajamundi CJE, Koponen J, Ruuskanen V, Elfving J, Kosonen A, Kauppinen J, et al. Capturing CO2 from air: technical performance and process control improvement. J CO2 Util. 2019;30:232–9.
Article
CAS
Google Scholar
Keith DW, Holmes G, St. Angelo D, Heidel K. A process for capturing CO2 from the atmosphere. Joule. 2018;2(8):1573–94.
Article
CAS
Google Scholar
Deng H, Bielicki JM, Oppenheimer M, Fitts JP, Peters CA. Leakage risks of geologic CO2 storage and the impacts on the global energy system and climate change mitigation. Clim Chang. 2017;144(2):151–63.
Article
CAS
Google Scholar
Kuhl K. Electrochemical Reducation of Carbon Dioxide on Transition Metal Surfaces. PhD Thesis. USA: Stanford University; 2013.
Zheng Y, Zhang W, Li Y, Chen J, Yu B, Wang J, et al. Energy related CO 2 conversion and utilization: advanced materials/nanomaterials, reaction mechanisms and technologies. Nano Energy. 2017;40:512–39.
Article
CAS
Google Scholar
Wang H, Mustaffar A, Phan AN, Zivkovic V, Reay D, Law R, et al. A review of process intensification applied to solids handling. Chem Eng Process Process Intensif. 2017;118:78–107.
Article
CAS
Google Scholar
Stankiewicz AI, Yan P. 110th anniversary: the missing link unearthed: materials and process intensification. Ind Eng Chem Res. 2019;58(22):9212–22.
Article
CAS
Google Scholar
Wu J, Zhou X-D. Catalytic conversion of CO2 to value added fuels: current status, challenges, and future directions. Chin J Catal. 2016;37(7):999–1015.
Article
CAS
Google Scholar
Zeng Y, Tu X. Plasma-catalytic hydrogenation of CO2for the cogeneration of CO and CH4in a dielectric barrier discharge reactor: effect of argon addition. J Phys D Appl Phys. 2017;50(18):184004.
Article
CAS
Google Scholar
Oko E, Wang M, Joel AS. Current status and future development of solvent-based carbon capture. Int J Coal Sci Technol. 2017;4(1):5–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scholes CA, Smith KH, Kentish SE, Stevens GW. CO2 capture from pre-combustion processes—strategies for membrane gas separation. Int J Greenhouse Gas Control. 2010;4(5):739–55.
Article
CAS
Google Scholar
Jansen D, Gazzani M, Manzolini G, Dijk E, Carbo M. Pre-combustion CO2 capture. Int J Greenhouse Gas Control. 2015;40:167–87.
Article
CAS
Google Scholar
Mantripragada HC, Rubin ES. Chemical looping for pre-combustion and post-combustion CO2 capture. Energy Procedia. 2017;114:6403–10.
Article
CAS
Google Scholar
Shakerian F, Kim K-H, Szulejko JE, Park J-W. A comparative review between amines and ammonia as sorptive media for post-combustion CO 2 capture. Appl Energy. 2015;148:10–22.
Article
CAS
Google Scholar
Wang M, Joel AS, Ramshaw C, Eimer D, Musa NM. Process intensification for post-combustion CO 2 capture with chemical absorption: a critical review. Appl Energy. 2015;158:275–91.
Article
CAS
Google Scholar
Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des. 2011;89(9):1609–24.
Article
CAS
Google Scholar
Mores P, Rodríguez N, Scenna N, Mussati S. CO2 capture in power plants: minimization of the investment and operating cost of the post-combustion process using MEA aqueous solution. Int J Greenhouse Gas Control. 2012;10:148–63.
Article
Google Scholar
Abu-Zahra MRM, Niederer JPM, Feron PHM, Versteeg GF. CO2 capture from power plants: part II. A parametric study of the economical performance based on mono-ethanolamine. Int J Greenhouse Gas Control. 2007;1(2):135–42.
Article
CAS
Google Scholar
MacInnes JM, Ayash AA, Dowson GRM. CO 2 absorption using diethanolamine-water solutions in a rotating spiral contactor. Chem Eng J. 2017;307:1084–91.
Article
CAS
Google Scholar
Duan H, Zhu K, Lu H, Liu C, Wu K, Liu Y, et al. CO2 absorption performance in a rotating disk reactor using DBU-glycerol as solvent. Chin J Chem Eng. 2019. https://doi.org/10.1016/j.cjche.2019.03.031.
Ganapathy H, Steinmayer S, Shooshtari A, Dessiatoun S, Ohadi MM, Alshehhi M. Process intensification characteristics of a microreactor absorber for enhanced CO 2 capture. Appl Energy. 2016;162:416–27.
Article
CAS
Google Scholar
Zheng B, Yun R, Bai J, Lu Z, Du L, Li Y. Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption. Inorg Chem. 2013;52(6):2823–9.
Article
CAS
PubMed
Google Scholar
Jassim MS, Rochelle G, Eimer D, Ramshaw C. Carbon dioxide absorption and desorption in aqueous Monoethanolamine solutions in a rotating packed bed. Ind Eng Chem Res. 2007;46(9):2823–33.
Article
CAS
Google Scholar
Merkel TC, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci. 2010;359(1–2):126–39.
Article
CAS
Google Scholar
Zhuang Q, Clements B, Li B. Emerging new types of absorbents for Postcombustion carbon capture. In: Recent advances in carbon capture and storage; 2017.
Google Scholar
Lively RP, Chance RR, Koros WJ. Enabling Low-cost CO2 capture via heat integration. Ind Eng Chem Res. 2010;49(16):7550–62.
Article
CAS
Google Scholar
Lin CC, Lin YH, Tan CS. Evaluation of alkanolamine solutions for carbon dioxide removal in cross-flow rotating packed beds. J Hazard Mater. 2010;175(1–3):344–51.
Article
CAS
PubMed
Google Scholar
Lin C-C, Kuo Y-W. Mass transfer performance of rotating packed beds with blade packings in absorption of CO 2 into MEA solution. Int J Heat Mass Transf. 2016;97:712–8.
Article
CAS
Google Scholar
Thiels M, Wong DSH, Yu C-H, Kang J-L, Jang SS, Tan C-S. Modelling and design of carbon dioxide absorption in rotating packed bed and packed column. IFAC-PapersOnline. 2016;49:895–900.
Article
Google Scholar
Rosli A, Ahmad AL, Jit Kiang L, Siew Chun L. Advances in liquid absorbents for CO2 capture: a review. J Phys Sci. 2017;28(Suppl. 1):121–44.
Article
Google Scholar
Wu X, Yu Y, Qin Z, Zhang Z. The advances of post-combustion CO2 capture with chemical solvents: review and guidelines. Energy Procedia. 2014;63:1339–46.
Article
CAS
Google Scholar
Abu-Zahra MRM, Schneiders LHJ, Niederer JPM, Feron PHM, Versteeg GF. CO2 capture from power plants: part I. a parametric study of the technical performance based on monoethanolamine. Int J Greenhouse Gas Control. 2007;1(1):37–46.
Article
CAS
Google Scholar
Yu C-H, Tan C-S. CO2 capture by aqueous solution containing mixed Alkanolamines and Diethylene glycol in a rotating packed bed. Energy Procedia. 2014;63:758–64.
Article
CAS
Google Scholar
Yu C-H, Cheng H-H, Tan C-S. CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed. Int J Greenhouse Gas Control. 2012;9:136–47.
Article
CAS
Google Scholar
Yu C-H, Chen M-T, Chen H, Tan C-S. Effects of process configurations for combination of rotating packed bed and packed bed on CO 2 capture. Appl Energy. 2016;175:269–76.
Article
CAS
Google Scholar
Xiao M, Liu H, Zhang H, Na Y, Tontiwachwuthikul P, Liang Z. The study of CO 2 absorption intensification using porous media material in aqueous AMP solution. Petroleum. 2018;4(1):90–4.
Article
Google Scholar
Zhuang Q, Clements B. CO2 capture by biphasic absorbent–absorption performance and VLE characteristics. Energy. 2018;147:169–76.
Article
CAS
Google Scholar
Ying J, Eimer DA, Brakstad F, Haugen HA. Ultrasound intensified CO2 desorption from pressurized loaded monoethanolamine solutions. I parameters investigation and modelling. Energy. 2018;163:168–79.
Article
CAS
Google Scholar
Ying J, Eimer DA, Mathisen A, Brakstad F, Haugen HA. Ultrasound intensify CO2 desorption from pressurized loaded monoethanolamine solutions. II Optimization and cost estimation. Energy. 2019;173:218–28.
Article
CAS
Google Scholar
Boodhoo KVK. Higee technologies and their applications to green intensified processing. In Stefanidis G, Stankiewicz A. editors. Alternative Energy Sources for Green Chemistry. Cambridge: The Royal Society of Chemistry; 2016. p. 339-59.
Xie C, Dong Y, Zhang L, Chu G, Luo Y, Sun B, et al. Low-concentration CO2 capture from natural gas power plants using a rotating packed bed reactor. Energy Fuel. 2019;33(3):1713–21.
Article
CAS
Google Scholar
Chamchan N, Chang J-Y, Hsu H-C, Kang J-L, Wong DSH, Jang S-S, et al. Comparison of rotating packed bed and packed bed absorber in pilot plant and model simulation for CO 2 capture. J Taiwan Inst Chem Eng. 2017;73:20–6.
Article
CAS
Google Scholar
Lin C-C, Liu W-T, Tan C-S. Removal of carbon dioxide by absorption in a rotating packed bed. Ind Eng Chem Res. 2003;42:2381–6.
Article
CAS
Google Scholar
Cheng H-H, Lai C-C, Tan C-S. Thermal regeneration of alkanolamine solutions in a rotating packed bed. Int J Greenhouse Gas Control. 2013;16:206–16.
Article
CAS
Google Scholar
Eimer D, Eldrup N. Process intensification in a business context: general considerations. In: Boodhoo K, Harvey A, editors. Process Intensification for Green Chemistry. Chichester: John Wiley and Sons, Ltd; 2013. p. 355–67.
Chapter
Google Scholar
Borhani TN, Oko E, Wang M. Process modelling, validation and analysis of rotating packed bed stripper in the context of intensified CO2 capture with MEA. J Ind Eng Chem. 2019;75:285–95.
Article
CAS
Google Scholar
Reay D, Ramshaw C, Harvey A. Chapter 8 - application areas – petrochemicals and fine chemicals. In: Reay D, Ramshaw C, Harvey A, editors. Process intensification. 2nd ed. Oxford: Butterworth-Heinemann; 2013. p. 259–321.
Chapter
Google Scholar
Siriwardane RV, Shen M-S, Fisher EP, Poston JA. Adsorption of CO2 on molecular sieves and activated carbon. Energy Fuel. 2001;15(2):279–84.
Article
CAS
Google Scholar
Merel J, Clausse M, Meunier F. Experimental investigation on CO2 post−combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites. Ind Eng Chem Res. 2008;47(1):209–15.
Article
CAS
Google Scholar
Mohamedali M, Nath D, Ibrahim H, Henni A. Review of recent developments in CO2 capture using solid materials: Metal Organic Frameworks (MOFs). In: Moya BL, Pous J, editors. Greenhouse Gases. London: IntechOpen; 2016. p. 115–54.
Google Scholar
Ding M, Flaig RW, Jiang HL, Yaghi OM. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem Soc Rev. 2019;48(10):2783–828.
Article
CAS
PubMed
Google Scholar
Wang J, Huang L, Yang R, Zhang Z, Wu J, Gao Y, et al. Recent advances in solid sorbents for CO2 capture and new development trends. Energy Environ Sci. 2014;7(11):3478–518.
Article
CAS
Google Scholar
Saha D, Bao Z, Jia F, Deng S. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ Sci Technol. 2010;44(5):1820–6.
Article
CAS
PubMed
Google Scholar
Bernal OI, Mooney CB, Flickinger MC. Specific photosynthetic rate enhancement by cyanobacteria coated onto paper enables engineering of highly reactive cellular biocomposite “leaves”. Biotechnol Bioeng. 2014;111(10):1993–2008.
Article
CAS
PubMed
Google Scholar
Flickinger MC, Bernal OI, Schulte MJ, Broglie JJ, Duran CJ, Wallace A, et al. Biocoatings: challenges to expanding the functionality of waterborne latex coatings by incorporating concentrated living microorganisms. J Coat Technol Res. 2017;14(4):791–808.
Article
CAS
Google Scholar
Bernal O, Pawlak J, Flickinger M. Microbial paper: cellulose fiber-based photo-absorber producing hydrogen gas from acetate using dry-stabilized Rhodopseudomonas palustris. BioResources. 2017;12:4013–30.
Article
CAS
Google Scholar
Moreira D, Pires JCM. Atmospheric CO2 capture by algae: negative carbon dioxide emission path. Bioresour Technol. 2016;215:371–9.
Article
CAS
PubMed
Google Scholar
Tongprawhan W, Srinuanpan S, Cheirsilp B. Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid. Bioresour Technol. 2014;170:90–9.
Article
CAS
PubMed
Google Scholar
Cheng L, Zhang L, Chen H, Gao C. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol. 2006;50(3):324–9.
Article
CAS
Google Scholar
Ekins-Coward T, Boodhoo KVK, Velasquez-Orta S, Caldwell G, Wallace A, Barton R, et al. A microalgae biocomposite-integrated spinning disk bioreactor (SDBR): toward a scalable engineering approach for bioprocess intensification in light-driven CO2 absorption applications. Ind Eng Chem Res. 2019;58(15):5936–49.
Article
CAS
Google Scholar
Nayak M, Suh WI, Lee B, Chang YK. Enhanced carbon utilization efficiency and FAME production of Chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide. Energy Convers Manag. 2018;156:45–52.
Article
CAS
Google Scholar
Flickinger MC, Duran CJ, Wallace AN, Schulte MJ, Velev OD, Chakraborty N, et al., Continuous gas processing without bubbles using thin liquid film bioreactors containing biocomposite biocatalysts. Poster presented at Integrated Continuous Biomanufacturing III; 17–21 September, 2017, Lisbon, Portugal,
Iglauer S. Optimum storage depths for structural CO2 trapping. Int J Greenhouse Gas Control. 2018;77:82–7.
Article
CAS
Google Scholar
Abdullah H, Khan MMR, Ong HR, Yaakob Z. Modified TiO 2 photocatalyst for CO 2 photocatalytic reduction: an overview. J CO2 Util. 2017;22:15–32.
Article
CAS
Google Scholar
Ola O, Maroto-Valer M, Liu D, Mackintosh S, Lee C-W, Wu JCS. Performance comparison of CO2 conversion in slurry and monolith photoreactors using Pd and Rh-TiO2 catalyst under ultraviolet irradiation. Appl Catal B Environ. 2012;126:172–9.
Article
CAS
Google Scholar
Cheng X, Chen R, Zhu X, Liao Q, An L, Ye D, et al. An optofluidic planar microreactor for photocatalytic reduction of CO 2 in alkaline environment. Energy. 2017;120:276–82.
Article
CAS
Google Scholar
Whipple D, Finke E, Kenis P. Microfluidic reactor for the electrochemical reduction of carbon dioxide: The effect of pH. Electrochemical and Solid State Letters. 2010;13(9):109–11.
Article
CAS
Google Scholar
Xie F, Chen R, Zhu X, Liao Q, Ye D, Zhang B, et al. CO2 utilization: direct power generation by a coupled system that integrates photocatalytic reduction of CO2 with photocatalytic fuel cell. J CO2 Util. 2019;32:31–6.
Article
CAS
Google Scholar
Jiménez C, García J, Camarillo R, Martínez F, Rincón J. Electrochemical CO2 reduction to fuels using Pt/CNT catalysts synthesized in supercritical medium. Energy Fuel. 2017;31(3):3038–46.
Article
CAS
Google Scholar
Merino-Garcia I, Alvarez-Guerra E, Albo J, Irabien A. Electrochemical membrane reactors for the utilisation of carbon dioxide. Chem Eng J. 2016;305:104–20.
Article
CAS
Google Scholar
Wu XY, Ghoniem AF. Hydrogen-assisted carbon dioxide thermochemical reduction on La0.9 Ca0.1 FeO3-delta membranes: a kinetics study. ChemSusChem. 2018;11(2):483–93.
Article
CAS
PubMed
Google Scholar
Barber J, Tran PD. From natural to artificial photosynthesis. J R Soc Interface. 2013;10(81):20120984.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fu J, Jiang K, Qiu X, Yu J, Liu M. Product selectivity of photocatalytic CO2 reduction reactions. Mater Today. 2019. https://doi.org/10.1016/j.mattod.2019.06.009.
Nguyen TDC, Nguyen TPLC, Mai HTT, Dao V-D, Nguyen MP, Nguyen VN. Novel photocatalytic conversion of CO2 by vanadium-doped tantalum nitride for valuable solar fuel production. J Catal. 2017;352:67–74.
Article
CAS
Google Scholar
Teramura K, Tsuneoka H, Shishido T, Tanaka T. Effect of H2 gas as a reductant on photoreduction of CO2 over a Ga2O3 photocatalyst. Chem Phys Lett. 2008;467(1–3):191–4.
Article
CAS
Google Scholar
Meng X, Yu Q, Liu G, Shi L, Zhao G, Liu H, et al. Efficient photocatalytic CO 2 reduction in all-inorganic aqueous environment: cooperation between reaction medium and cd (II) modified colloidal ZnS. Nano Energy. 2017;34:524–32.
Article
CAS
Google Scholar
Pan YX, You Y, Xin S, Li Y, Fu G, Cui Z, et al. Photocatalytic CO2 reduction by carbon-coated indium-oxide Nanobelts. J Am Chem Soc. 2017;139(11):4123–9.
Article
CAS
PubMed
Google Scholar
Byrne C, Subramanian G, Pillai SC. Recent advances in photocatalysis for environmental applications. J Environ Chem Eng. 2017.
Shaham-Waldmann N, Paz Y. Away from TiO2: a critical minireview on the developing of new photocatalysts for degradation of contaminants in water. Mater Sci Semicond Process. 2016;42:72–80.
Article
CAS
Google Scholar
Fox MA, Dulay MT. Heterogeneous photocatalysis. Chem Rev. 1993;93:341–57.
Article
CAS
Google Scholar
Nikokavoura A, Trapalis C. Alternative photocatalysts to TiO 2 for the photocatalytic reduction of CO 2. Appl Surf Sci. 2017;391:149–74.
Article
CAS
Google Scholar
Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci. 2017;392:658–86.
Article
CAS
Google Scholar
Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci. 2010;46(4):855–74.
Article
CAS
Google Scholar
Hernández-Ramírez A, Medina-Ramírez I. Semiconducting materials. In: Hernández-Ramírez A, Medina-Ramírez I, editors. Photocatalytic semiconductors, synthesis, characterisation and environmental applications. Switzerland: Springer International Publishing; 2015. p. 1–40.
Google Scholar
Kado Y, Hahn R, Lee C-Y, Schmuki P. Strongly enhanced photocurrent response for Na doped Ta3N5-nano porous structure. Electrochem Commun. 2012;17:67–70.
Article
CAS
Google Scholar
Chen J, Xin F, Qin S, Yin X. Photocatalytically reducing CO2 to methyl formate in methanol over ZnS and Ni-doped ZnS photocatalysts. Chem Eng J. 2013;230:506–12.
Article
CAS
Google Scholar
Khalilzadeh A, Shariati A. Photoreduction of CO2 over heterogeneous modified TiO2 nanoparticles under visible light irradiation: synthesis, process and kinetic study. Sol Energy. 2018;164:251–61.
Article
CAS
Google Scholar
Parayil SK, Razzaq A, Park S-M, Kim HR, Grimes CA, In S-I. Photocatalytic conversion of CO2 to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes. Appl Catal A Gen. 2015;498:205–13.
Park H, Kim H-I, Moon G-H, Choi W. Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy Environ Sci. 2016;9(2):411–33.
Article
CAS
Google Scholar
Zhang L, Jaroniec M. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Appl Surf Sci. 2018;430:2–17.
Article
CAS
Google Scholar
Lee YY, Jung HS, Kang YT. A review: effect of nanostructures on photocatalytic CO2 conversion over metal oxides and compound semiconductors. J CO2 Util. 2017;20:163–77.
Article
CAS
Google Scholar
Jin B, Yao G, Jin F, Hu YH. Photocatalytic conversion of CO2 over C3N4-based catalysts. Catal Today. 2018;316:149–54.
Article
CAS
Google Scholar
Dong Q, Mohamad Latiff N, Mazánek V, Rosli NF, Chia HL, Sofer Z, et al. Triazine- and Heptazine-based carbon nitrides: toxicity. ACS Appl Nano Mater. 2018;1(9):4442–9.
Article
CAS
Google Scholar
Di T, Zhu B, Cheng B, Yu J, Xu J. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. J Catal. 2017;352:532–41.
Article
CAS
Google Scholar
Tang J-Y, Guo R-T, Pan W-G, Zhou W-G, Huang C-Y. Visible light activated photocatalytic behaviour of Eu (III) modified g-C3N4 for CO2 reduction and H2 evolution. Appl Surf Sci. 2019;467–468:206–12.
Article
CAS
Google Scholar
Reli M, Huo P, Šihor M, Ambrožová N, Troppová I, Matějová L, et al. Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J Phys Chem A. 2016;120(43):8564–73.
Article
CAS
PubMed
Google Scholar
Tseng IH, Sung YM, Chang PY, Chen CY. Anatase TiO(2)-decorated graphitic carbon nitride for photocatalytic conversion of carbon dioxide. Polymers (Basel). 2019;11(1):146.
Article
PubMed Central
CAS
Google Scholar
Leblebici ME, Stefanidis GD, Van Gerven T. Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment. Chem Eng Process Process Intensif. 2015;97:106–11.
Article
CAS
Google Scholar
Leblebici ME. Design, Modelling and Benchmarking of Photoreactors and Separation Processes for Waste Treatment and Purification. PhD Thesis. KU Leuven, Belgium; 2017.
Mazierski P, Bajorowicz B, Grabowska E, Zaleska-Medynska A. Photoreactor Design Aspects and Modeling of Light. In: Colmenares JC, Xu Y-J, editors. Heterogeneous Photocatalysis. Green Chemistry and Sustainable Technology. Berlin Heidelberg: Springer; 2016. p. 211–48.
Google Scholar
Ola O, Maroto-Valer MM. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photochem Photobiol C: Photochem Rev. 2015;24:16–42.
Article
CAS
Google Scholar
Chen H, Chu F, Yang L, Ola O, Du X, Yang Y. Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls. Appl Energy. 2018;230:1403–13.
Article
CAS
Google Scholar
Khan AA, Tahir M. Recent advancements in engineering approach towards design of photo-reactors for selective photocatalytic CO2 reduction to renewable fuels. J CO2 Util. 2019;29:205–39.
Article
CAS
Google Scholar
Liou P-Y, Chen S-C, Wu JCS, Liu D, Mackintosh S, Maroto-Valer M, et al. Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor. Energy Environ Sci. 2011;4(4):1487–94.
Article
CAS
Google Scholar
Carneiro JT, Berger R, Moulijn JA, Mul G. An internally illuminated monolith reactor: pros and cons relative to a slurry reactor. Catal Today. 2009;147:S324–S9.
Article
CAS
Google Scholar
Xiong Z, Lei Z, Ma S, Chen X, Gong B, Zhao Y, et al. Photocatalytic CO2 reduction over V and W codoped TiO2 catalyst in an internal-illuminated honeycomb photoreactor under simulated sunlight irradiation. Appl Catal B Environ. 2017;219:412–24.
Article
CAS
Google Scholar
Tahir B, Tahir M, Amin NS. Performance analysis of monolith photoreactor for CO2 reduction with H2. Energy Convers Manag. 2015;90:272–81.
Article
CAS
Google Scholar
Lokhat D, Domah AK, Padayachee K, Baboolal A, Ramjugernath D. Gas–liquid mass transfer in a falling film microreactor: effect of reactor orientation on liquid-side mass transfer coefficient. Chem Eng Sci. 2016;155:38–44.
Article
CAS
Google Scholar
Matsushita Y, Ichimura T, Ohba N, Kumada S, Sakeda K, Suzuki T, et al. Recent progress on photoreactions in microreactors. Pure Appl Chem. 2007;79(11):1959–68.
Article
CAS
Google Scholar
Gorges R, Meyer S, Kreisel G. Photocatalysis in microreactors. J Photochem Photobiol A Chem. 2004;167(2–3):95–9.
Article
CAS
Google Scholar
Su Y. A general introduction to transport phenomena in continuous-flow microreactors for photochemical transformations: from engineering principles to chemical applications; 2017. p. 37–67.
Google Scholar
Li L, Wang G, Chen R, Zhu X, Wang H, Liao Q, et al. Optofluidics based micro-photocatalytic fuel cell for efficient wastewater treatment and electricity generation. Lab Chip. 2014;14(17):3368–75.
Article
CAS
PubMed
Google Scholar
Delacour C, Lutz C, Kuhn S. Pulsed ultrasound for temperature control and clogging prevention in microreactors. Ultrason Sonochem. 2019;55:67–74.
Article
CAS
PubMed
Google Scholar
Ramos B, Ookawara S, Matsushita Y, Yoshikawa S. Low-cost polymeric photocatalytic microreactors: catalyst deposition and performance for phenol degradation. J Environ Chem Eng. 2014;2(3):1487–94.
Article
CAS
Google Scholar
Corbel S, Becheikh N, Roques-Carmes T, Zahraa O. Mass transfer measurements and modeling in a microchannel photocatalytic reactor. Chem Eng Res Des. 2014;92(4):657–62.
Article
CAS
Google Scholar
Visan A, Rafieian D, Ogieglo W, Lammertink RGH. Modeling intrinsic kinetics in immobilized photocatalytic microreactors. Appl Catalysis B Environ. 2014;150–151:93–100.
Article
CAS
Google Scholar
Okawa A, Yoshida R, Isozaki T, Shigesato Y, Matsushita Y, Suzuki T. Photocatalytic oxidation of benzene in a microreactor with immobilized TiO2 thin films deposited by sputtering. Catal Commun. 2017;100:1–4.
Article
CAS
Google Scholar
Fabry DC, Ho YA, Zapf R, Tremel W, Panthöfer M, Rueping M, et al. Blue light mediated C–H arylation of heteroarenes using TiO2 as an immobilized photocatalyst in a continuous-flow microreactor. Green Chem. 2017;19(8):1911–8.
Article
CAS
Google Scholar
Rehm TH, Gros S, Löb P, Renken A. Photonic contacting of gas–liquid phases in a falling film microreactor for continuous-flow photochemical catalysis with visible light. React Chem Eng. 2016;1(6):636–48.
Article
CAS
Google Scholar
Durst J, Rudnev A, Dutta A, Fu Y, Herranz J, Kaliginedi V, et al. Electrochemical CO2 reduction - a critical view on fundamentals, materials and applications. Chimia (Aarau). 2015;69(12):769–76.
Article
CAS
Google Scholar
Whang HS, Lim J, Choi MS, Lee J, Lee H. Heterogeneous catalysts for catalytic CO2 conversion into value-added chemicals. BMC Chem Eng. 2019;1(1):9.
Article
Google Scholar
Lu Q, Jiao F. Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy. 2016;29:439–56.
Article
CAS
Google Scholar
Yin Z, Palmore GTR, Sun S. Electrochemical reduction of CO2 catalyzed by metal nanocatalysts. In: Trends in Chemistry; 2019.
Google Scholar
Olah GA, Goeppert A, Prakash GKS. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem. 2009;74(2):487–98.
Article
CAS
PubMed
Google Scholar
Liu M, Liu M, Wang X, Kozlov SM, Cao Z, De Luna P, et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule. 2019;3(7):1703–18.
Article
CAS
Google Scholar
Wu J, Sharifi T, Gao Y, Zhang T, Ajayan PM. Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv Mater. 2019;31(13):1804257.
Article
CAS
Google Scholar
Wang Q, Dong H, Yu H, Yu H. Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer. J Power Sources. 2015;279:1–5.
Article
CAS
Google Scholar
García J, Jiménez C, Martínez F, Camarillo R, Rincón J. Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. J Catal. 2018;367:72–80.
Article
CAS
Google Scholar
Bevilacqua M, Filippi J, Miller HA, Vizza F. Recent technological progress in CO2 electroreduction to fuels and energy carriers in aqueous environments. Energy Technol. 2015;3(3):197–210.
Article
CAS
Google Scholar
Lu X, Leung DYC, Wang H, Xuan J. A high performance dual electrolyte microfluidic reactor for the utilization of CO 2. Appl Energy. 2017;194:549–59.
Article
CAS
Google Scholar
Wang Y, Liu T, Lei L, Chen F. High temperature solid oxide H 2 O/CO 2 CO-electrolysis for syngas production. Fuel Process Technol. 2017;161:248–58.
Article
CAS
Google Scholar
Zhang W, Zheng Y, Yu B, Wang J, Chen J. Electrochemical characterization and mechanism analysis of high temperature co-electrolysis of CO 2 and H 2 O in a solid oxide electrolysis cell. Int J Hydrog Energy. 2017;42(50):29911–20.
Article
CAS
Google Scholar
Call AV, Holmes T, Desai PD, Zimmerman WB, Rothman RH, editors. Plasma and fluidic oscillation assisted electrolysis of CO2 using a solid oxide cell. 17th international conference on carbon dioxide utilization - ICCDU 2019. 2019; Aachen.
Jouny M, Luc W, Jiao F. General techno-economic analysis of CO2 electrolysis systems. Ind Eng Chem Res. 2018;57(6):2165–77.
Article
CAS
Google Scholar
Zhang K, Zhang G, Liu X, Phan AN, Luo K. A study on CO2 decomposition to CO and O2 by the combination of catalysis and dielectric-barrier discharges at low temperatures and ambient pressure. Ind Eng Chem Res. 2017;56(12):3204–16.
Article
CAS
Google Scholar
Matsumoto T, Wang D, Namihira T, Akiyam H. Non-thermal plasma technic for air pollution control. Air pollution - a comprehensive perspective; 2012.
Google Scholar
Giammaria G, van Rooij G, Lefferts L. Plasma catalysis: distinguishing between thermal and chemical effects. Catalysts. 2019;9(2):185.
Article
CAS
Google Scholar
Samukawa S, Hori M, Rauf S, Tachibana K, Bruggeman P, Kroesen G, et al. The 2012 plasma roadmap. J Phys D Appl Phys. 2012;45(25):253001.
Article
CAS
Google Scholar
Chen HL, Lee HM, Chen SH, Chang MB, Yu SJ, Li SN. Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol. 2009;43(7):2216–27.
Article
CAS
PubMed
Google Scholar
Michielsen I, Uytdenhouwen Y, Pype J, Michielsen B, Mertens J, Reniers F, et al. CO2 dissociation in a packed bed DBD reactor: first steps towards a better understanding of plasma catalysis. Chem Eng J. 2017;326:477–88.
Article
CAS
Google Scholar
Ashford B, Tu X. Non-thermal plasma technology for the conversion of CO 2. Curr Opin Green Sustain Chem. 2017;3:45–9.
Article
Google Scholar
Mei D, Zhu X, He Y-L, Yan JD, Tu X. Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials. Plasma Sources Sci Technol. 2014;24(1):015011.
Article
CAS
Google Scholar
Pou JO, Colominas C, Gonzalez-Olmos R. CO2 reduction using non-thermal plasma generated with photovoltaic energy in a fluidized reactor. J CO2 Util. 2018;27:528–35.
Article
CAS
Google Scholar
Tesser R, Bottino A, Capannelli G, Montagnaro F, Vitolo S, Di Serio M, et al. Advantages in the use of membrane contactors for the study of gas−liquid and gas−liquid−solid reactions. Ind Eng Chem Res. 2005;44(25):9451–60.
Article
CAS
Google Scholar
Han Y, Ho WSW. Recent advances in polymeric membranes for CO2 capture. Chin J Chem Eng. 2018;26(11):2238–54.
Article
CAS
Google Scholar
Nagy E. Membrane Contactors. In: Nagy E, editor. Basic Equations of Mass Transport Through a Membrane Layer (Second Edition). Amsterdam: Elsevier; 2019. p. 337–45.
Chapter
Google Scholar
Moullec YL, Neveux T. Process modifications for CO2 capture. In: Feron PHM, editor. Absorption-Based Post-combustion Capture of Carbon Dioxide. Duxford: Woodhead Publishing; 2016. p. 305–40.
Google Scholar
Freeman B, Hao P, Baker R, Kniep J, Chen E, Ding J, et al. Hybrid membrane-absorption CO2 capture process. Energy Procedia. 2014;63:605–13.
Article
CAS
Google Scholar
Brunetti A, Pomilla FR, Marcì G, Garcia-Lopez EI, Fontananova E, Palmisano L, et al. CO2 reduction by C3N4-TiO2 Nafion photocatalytic membrane reactor as a promising environmental pathway to solar fuels. Appl Catal B Environ. 2019;255:117779.
Article
Google Scholar
Molinari R, Lavorato C, Argurio P, Szymański K, Darowna D, Mozia S. Overview of photocatalytic membrane reactors in organic synthesis, energy storage and environmental applications. Catalysts. 2019;9(3):239.
Article
CAS
Google Scholar
Endrődi B, Bencsik G, Darvas F, Jones R, Rajeshwar K, Janáky C. Continuous-flow electroreduction of carbon dioxide. Prog Energy Combust Sci. 2017;62:133–54.
Article
Google Scholar
Christgen B, Scott K, Dolfing J, Head IM, Curtis TP. An evaluation of the performance and economics of membranes and separators in single chamber microbial fuel cells treating domestic wastewater. PLoS One. 2015;10(8):e0136108.
Article
PubMed
PubMed Central
CAS
Google Scholar
Basile A, Gallucci F, Morrone P. Advanced carbon dioxide (CO2) gas separation membrane development for power plants. In: Roddy D, editor. Advanced Power Plant Materials, Design and Technology. Cambridge: Woodhead Publishing; 2010. p. 143–86.
Chapter
Google Scholar
Karoor S, Sirkar KK. Gas absorption studies in microporous hollow fiber membrane modules. Ind Eng Chem Res. 1993;32(4):674–84.
Article
CAS
Google Scholar
Iaquaniello G, Centi G, De Falco M, Basile A. Membrane reactors. Membrane Reactor Engineering; 2016. p. 1–21.
Book
Google Scholar