Peccia J, Westerhoff P. We should expect more out of our sewage sludge. Environ Sci Technol. 2015;49(14):8271–6. https://doi.org/10.1021/acs.est.5b01931.
Article
CAS
PubMed
Google Scholar
Syed-Hassan SSA, Wang Y, Hu S, Su S, Xiang J. Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations. Renew Sustain Energy Rev. 2017;80:888–913. https://doi.org/10.1016/j.rser.2017.05.262.
Article
CAS
Google Scholar
Tyagi VK, Lo SL. Sludge: a waste or renewable source for energy and resources recovery? Renew Sustain Energy Rev. 2013;25:708–28. https://doi.org/10.1016/j.rser.2013.05.029.
Article
CAS
Google Scholar
Gu Y, Li Y, Li X, Luo P, Wang H, Robinson ZP, et al. The feasibility and challenges of energy self-sufficient wastewater treatment plants. Appl Energy. 2017;204:1463–75. https://doi.org/10.1016/j.apenergy.2017.02.069.
Article
Google Scholar
Aymerich I, Rieger L, Sobhani R, Rosso D, Corominas L. The difference between energy consumption and energy cost: modelling energy tariff structures for water resource recovery facilities. Water Res. 2015;81:113–23. https://doi.org/10.1016/j.watres.2015.04.033.
Article
CAS
PubMed
Google Scholar
Clarke BO, Smith SR. Review of 'emerging' organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environ Int. 2011;37(1):226–47. https://doi.org/10.1016/j.envint.2010.06.004.
Article
CAS
PubMed
Google Scholar
Jones-Lepp TL, Stevens R. Pharmaceuticals and personal care products in biosolids/sewage sludge: the interface between analytical chemistry and regulation. Anal Bioanal Chem. 2007;387(4):1173–83. https://doi.org/10.1007/s00216-006-0942-z.
Article
CAS
PubMed
Google Scholar
Lapworth DJ, Baran N, Stuart ME, Ward RS. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut. 2012;163:287–303. https://doi.org/10.1016/j.envpol.2011.12.034.
Article
CAS
PubMed
Google Scholar
Udayanga WDC, Veksha A, Giannis A, Lisak G, Chang VWC, Lim TT. Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel. 2018;226:721–44. https://doi.org/10.1016/j.fuel.2018.04.045.
Article
CAS
Google Scholar
Lewis DL, Gattie DK. Pathogen risks from applying sewage sludge to land. Environ Sci Technol. 2002;36(13):286A–93A. https://doi.org/10.1021/es0223426.
Article
CAS
PubMed
Google Scholar
Fytili D, Zabaniotou A. Utilization of sewage sludge in EU application of old and new methods - a review. Renew Sustain Energy Rev. 2008;12(1):116–40. https://doi.org/10.1016/j.rser.2006.05.014.
Article
CAS
Google Scholar
Chen QY, Tyrer M, Hills CD, Yang XM, Carey P. Immobilisation of heavy metal in cement-based solidification/stabilisation: a review. Waste Manag. 2009;29(1):390–403. https://doi.org/10.1016/j.wasman.2008.01.019.
Article
CAS
PubMed
Google Scholar
Rodriguez NH, Martinez-Ramirez S, Blanco-Varela MT, Donatello S, Guillem M, Puig J, et al. The effect of using thermally dried sewage sludge as an alternative fuel on Portland cement clinker production. J Clean Prod. 2013;52:94–102. https://doi.org/10.1016/j.jclepro.2013.02.026.
Article
CAS
Google Scholar
Valls S, Vazquez E. Stabilisation and solidification of sewage sludges with Portland cement. Cem Concr Res. 2000;30(10):1671–8. https://doi.org/10.1016/s0008-8846(00)00363-x.
Article
CAS
Google Scholar
Furness DT, Hoggett LA, Judd SJ. Thermochemical treatment of sewage sludge. J Chartered Inst Water Environ Manage. 2000;14(1):57–65.
Article
CAS
Google Scholar
Chun YN, Kim SC, Yoshikawa K. Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier. Appl Energy. 2011;88(4):1105–12. https://doi.org/10.1016/j.apenergy.2010.10.038.
Article
CAS
Google Scholar
Manara P, Zabaniotou A. Towards sewage sludge based biofuels via thermochemical conversion - a review. Renew Sustain Energy Rev. 2012;16(5):2566–82. https://doi.org/10.1016/j.rser.2012.01.074.
Article
CAS
Google Scholar
Campbell HW. Sludge management - future issues and trends. Water Sci Technol. 2000;41(8):1–8.
Article
CAS
Google Scholar
Rulkens W. Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuel. 2008;22(1):9–15. https://doi.org/10.1021/ef700267m.
Article
CAS
Google Scholar
Liu BB, Wei Q, Zhang B, Bi J. Life cycle GHG emissions of sewage sludge treatment and disposal options in tai Lake watershed, China. Sci Total Environ. 2013;447:361–9. https://doi.org/10.1016/j.scitotenv.2013.01.019.
Article
CAS
PubMed
Google Scholar
Oladejo J, Shi KQ, Luo X, Yang G, Wu T. A review of sludge-to-energy recovery methods. Energies. 2019;12(1). https://doi.org/10.3390/en12010060.
Zhang LH, Xu CB, Champagne P. Overview of recent advances in thermo-chemical conversion of biomass. Energ Conver Manage. 2010;51(5):969–82. https://doi.org/10.1016/j.enconman.2009.11.038.
Article
CAS
Google Scholar
Skaggs RL, Coleman AM, Seiple TE, Milbrandt AR. Waste-to-energy biofuel production potential for selected feedstocks in the conterminous United States. Renew Sustain Energy Rev. 2018;82:2640–51. https://doi.org/10.1016/j.rser.2017.09.107.
Article
Google Scholar
Snowden-Swan LJ, Zhu Y, Jones SB, Elliott DC, Schmidt AJ, Hallen RT, et al. Hydrothermal liquefaction and upgrading of municipal wastewater treatment plant sludge: a preliminary techno-economic analysisPNNL-25464-Rev.1; Other: BM0102060 United States 10.2172/1327165 Other: BM0102060 PNNL English. Richland: Pacific Northwest National Lab. (PNNL); 2016.
Google Scholar
Q&A fact sheet − Land application and composting of biosolids; WEF (Water Environment Federation) 2010.
Clarke RM, Cummins E. Evaluation of "classic" and emerging contaminants resulting from the application of biosolids to agricultural lands: a review. Hum Ecol Risk Assess. 2015;21(2):492–513. https://doi.org/10.1080/10807039.2014.930295.
Article
CAS
Google Scholar
Pruden A, Pei R, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol. 2006;40(23):7445–50. https://doi.org/10.1021/es0604131.
Article
CAS
PubMed
Google Scholar
A plain english guide to the EPA Part 503 Biosolids Rule U.S. Environmental Protection Agency (U.S. EPA): Washington, DC, 1994.
Lu Q, He ZL, Stoffella PJ. Land application of biosolids in the USA: a review. Appl Environ Soil Sci. 2012. https://doi.org/10.1155/2012/201462.
Roy MM, Dutta A, Corscadden K, Havard P, Dickie L. Review of biosolids management options and co-incineration of a biosolid-derived fuel. Waste Manag. 2011;31(11):2228–35. https://doi.org/10.1016/j.wasman.2011.06.008.
Article
CAS
PubMed
Google Scholar
Zhang LH, Xu CB, Champagne P, Mabee W. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management. Waste Manag Res. 2014;32(7):586–600. https://doi.org/10.1177/0734242x14538303.
Article
CAS
PubMed
Google Scholar
Aracil C, Haro P, Fuentes-Cano D, Gomez-Barea A. Implementation of waste-to-energy options in landfill-dominated countries: economic evaluation and GHG impact. Waste Manag. 2018;76:443–56. https://doi.org/10.1016/j.wasman.2018.03.039.
Article
PubMed
Google Scholar
Fonts I, Gea G, Azuara M, Abrego J, Arauzo J. Sewage sludge pyrolysis for liquid production: a review. Renew Sustain Energy Rev. 2012;16(5):2781–805. https://doi.org/10.1016/j.rser.2012.02.070.
Article
CAS
Google Scholar
Adar E, Karatop B, Ince M, Bilgili MS. Comparison of methods for sustainable energy management with sewage sludge in Turkey based on SWOT-FAHP analysis. Renew Sustain Energy Rev. 2016;62:429–40. https://doi.org/10.1016/j.rser.2016.05.007.
Article
CAS
Google Scholar
Posmanik R, Labatut RA, Kim AH, Usack JG, Tester JW, Angenent LT. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresour Technol. 2017;233:134–43. https://doi.org/10.1016/j.biortech.2017.02.095.
Article
CAS
PubMed
Google Scholar
Marrone PA. Genifuel hydrothermal processing bench-scale technology evaluation project. Alexandria: Water Environment and Reuse Foundation; 2016.
Google Scholar
Salman CA, Schwede S, Thorin E, Li HL, Yan JY. Identification of thermochemical pathways for the energy and nutrient recovery from digested sludge in wastewater treatment plants. In: Yan J, Yang HX, Li H, Chen X, editors. Innovative solutions for energy transitions, vol. 158; 2019. p. 1317–22.
Google Scholar
Bianchini A, Bonfiglioli L, Pellegrini M, Saccani C. Sewage sludge drying process integration with a waste-to-energy power plant. Waste Manag. 2015;42:159–65. https://doi.org/10.1016/j.wasman.2015.04.020.
Article
CAS
PubMed
Google Scholar
Trinh TN, Jensen PA, Dam-Johansen K, Knudsen NO, Sorensen HR. Influence of the pyrolysis temperature on sewage sludge product distribution, bio-oil, and char properties. Energy Fuel. 2013;27(3):1419–27. https://doi.org/10.1021/ef301944r.
Article
CAS
Google Scholar
Fonts I, Juan A, Gea G, Murillo MB, Sanchez JL. Sewage sludge pyrolysis in fluidized bed, 1: influence of operational conditions on the product distribution. Ind Eng Chem Res. 2008;47(15):5376–85. https://doi.org/10.1021/ie7017788.
Article
CAS
Google Scholar
Shen L, Zhang DK. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed. Fuel. 2003;82(4):465–72. https://doi.org/10.1016/s0016-2361(02)00294-6.
Article
CAS
Google Scholar
Alvarez J, Lopez G, Amutio M, Artetxe M, Barbarias I, Arregi A, et al. Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor. Fuel Process Technol. 2016;149:169–75. https://doi.org/10.1016/j.fuproc.2016.04.015.
Article
CAS
Google Scholar
Chen SY, Sun Z, Zhang Q, Hu J, Xiang WG. Steam gasification of sewage sludge with CaO as CO2 sorbent for hydrogen-rich syngas production. Biomass Bioenergy. 2017;107:52–62. https://doi.org/10.1016/j.biombioe.2017.09.009.
Article
CAS
Google Scholar
Chen YA, Guo LJ, Cao W, Jin H, Guo SM, Zhang XM. Hydrogen production by sewage sludge gasification in supercritical water with a fluidized bed reactor. Int J Hydrogen Energy. 2013;38(29):12991–9. https://doi.org/10.1016/j.ijhydene.2013.03.165.
Article
CAS
Google Scholar
Freda C, Cornacchia G, Romanelli A, Valerio V, Grieco M. Sewage sludge gasification in a bench scale rotary kiln. Fuel. 2018;212:88–94. https://doi.org/10.1016/j.fuel.2017.10.013.
Article
CAS
Google Scholar
Lee U, Dong J, Chung JN. Experimental investigation of sewage sludge solid waste conversion to syngas using high temperature steam gasification. Energ Conver Manage. 2018;158:430–6. https://doi.org/10.1016/j.enconman.2017.12.081.
Article
CAS
Google Scholar
Fonts I, Azuara M, Gea G, Murillo MB. Study of the pyrolysis liquids obtained from different sewage sludge. J Anal Appl Pyrolysis. 2009;85(1–2):184–91. https://doi.org/10.1016/j.jaap.2008.11.003.
Article
CAS
Google Scholar
Huang YF, Shih CH, Chiueh PT, Lo SL. Microwave co-pyrolysis of sewage sludge and rice straw. Energy. 2015;87:638–44. https://doi.org/10.1016/j.energy.2015.05.039.
Article
CAS
Google Scholar
Xie QL, Peng P, Liu SY, Min M, Cheng YL, Wan YQ, et al. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production. Bioresour Technol. 2014;172:162–8. https://doi.org/10.1016/j.biortech.2014.09.006.
Article
CAS
PubMed
Google Scholar
Zhou JW, Liu SY, Zhou N, Fan LL, Zhang YN, Peng P, et al. Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization. Bioresour Technol. 2018;256:295–301. https://doi.org/10.1016/j.biortech.2018.02.034.
Article
CAS
PubMed
Google Scholar
Calvo LF, Garcia AI, Otero M. An experimental investigation of sewage sludge gasification in a fluidized bed reactor. Sci World J. 2013. https://doi.org/10.1155/2013/479403.
Qian LL, Wang SZ, Xu DH, Guo Y, Tang XY, Wang LF. Treatment of sewage sludge in supercritical water and evaluation of the combined process of supercritical water gasification and oxidation. Bioresour Technol. 2015;176:218–24. https://doi.org/10.1016/j.biortech.2014.10.125.
Article
CAS
PubMed
Google Scholar
Pedroza MM, Sousa JF, Vieira GEG, Bezerra MBD. Characterization of the products from the pyrolysis of sewage sludge in 1 kg/h rotating cylinder reactor. J Anal Appl Pyrolysis. 2014;105:108–15. https://doi.org/10.1016/j.jaap.2013.10.009.
Article
CAS
Google Scholar
Xu DH, Lin GK, Liu L, Wang Y, Jing ZF, Wang SZ. Comprehensive evaluation on product characteristics of fast hydrothermal liquefaction of sewage sludge at different temperatures. Energy. 2018;159:686–95. https://doi.org/10.1016/j.energy.2018.06.191.
Article
CAS
Google Scholar
Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energ Conver Manage. 2001;42(11):1357–78. https://doi.org/10.1016/s0196-8904(00)00137-0.
Article
CAS
Google Scholar
Balat M, Balat M, Kirtay E, Balat H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energ Conver Manage. 2009;50(12):3147–57. https://doi.org/10.1016/j.enconman.2009.08.014.
Article
CAS
Google Scholar
Zhang Q, Gong J, Skwarczek M, Yue D, You F. Sustainable process design and synthesis of hydrocarbon biorefinery through fast pyrolysis and Hydroprocessing. AICHE J. 2014;60(3):980–94. https://doi.org/10.1002/aic.14344.
Article
CAS
Google Scholar
Bruun EW, Ambus P, Egsgaard H, Hauggaard-Nielsen H. Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biol Biochem. 2012;46:73–9. https://doi.org/10.1016/j.soilbio.2011.11.019.
Article
CAS
Google Scholar
Fonts I, Juan A, Gea G, Murillo MB, Arauzo J. Sewage sludge pyrolysis in a fluidized bed, 2: influence of operating conditions on some physicochemical properties of the liquid product. Ind Eng Chem Res. 2009;48(4):2179–87. https://doi.org/10.1021/ie801448g.
Article
CAS
Google Scholar
Park HJ, Heo HS, Park YK, Yim JH, Jeon JK, Park J, et al. Clean bio-oil production from fast pyrolysis of sewage sludge: effects of reaction conditions and metal oxide catalysts. Bioresour Technol. 2010;101:S83–5. https://doi.org/10.1016/j.biortech.2009.06.103.
Article
CAS
PubMed
Google Scholar
Leng LJ, Li H, Yuan XZ, Zhou WG, Huang HJ. Bio-oil upgrading by emulsification/microemulsification: a review. Energy. 2018;161:214–32. https://doi.org/10.1016/j.energy.2018.07.117.
Article
CAS
Google Scholar
Chiaramonti D, Oasmaa A, Solantausta Y. Power generation using fast pyrolysis liquids from biomass. Renew Sustain Energy Rev. 2007;11(6):1056–86. https://doi.org/10.1016/j.rser.2005.07.008.
Article
CAS
Google Scholar
Balat M, Balat M, Kirtay E, Balat H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: gasification systems. Energ Conver Manage. 2009;50(12):3158–68. https://doi.org/10.1016/j.enconman.2009.08.013.
Article
CAS
Google Scholar
Demirbas A. Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energ Conver Manage. 2002;43(7):897–909. https://doi.org/10.1016/s0196-8904(01)00080-2.
Article
CAS
Google Scholar
Hernandez JJ, Aranda-Almansa G, Bula A. Gasification of biomass wastes in an entrained flow gasifier: effect of the particle size and the residence time. Fuel Process Technol. 2010;91(6):681–92. https://doi.org/10.1016/j.fuproc.2010.01.018.
Article
CAS
Google Scholar
Lv PM, Xiong ZH, Chang J, Wu CZ, Chen Y, Zhu JX. An experimental study on biomass air-steam gasification in a fluidized bed. Bioresour Technol. 2004;95(1):95–101. https://doi.org/10.1016/j.biortech.2004.02.003.
Article
CAS
PubMed
Google Scholar
Demirbas A. Biomass gasification for power generation in Turkey. Energy Sources Part a-Recovery Utilization Environ Effects. 2006;28(5):433–45. https://doi.org/10.1080/009083190913584.
Article
CAS
Google Scholar
Demirbas A. Converting biomass derived synthetic gas to fuels via fisher-tropsch synthesis. Energy Sources Part a-Recovery Utilization Environ Effects. 2007;29(16):1507–12. https://doi.org/10.1080/15567030601003676.
Article
CAS
Google Scholar
Wang B, Gebreslassie BH, You F. Sustainable design and synthesis of hydrocarbon biorefinery via gasification pathway: integrated life cycle assessment and technoeconomic analysis with multiobjective superstructure optimization. Comput Chem Eng. 2013;52:55–76. https://doi.org/10.1016/j.compchemeng.2012.12.008.
Article
CAS
Google Scholar
Dutta A, Phillips SD. Thermochemical ethanol via direct gasification and mixed alcohol synthesis of lignocellulosic biomassNREL/TP-510-45913; TRN: US200915%%391 United States 10.2172/962020 TRN: US200915%%391 NREL English. Golden: National Renewable Energy Lab. (NREL); 2009.
Book
Google Scholar
Phillips S, Aden A, Jechura J, Dayton D, Eggeman T. Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomassNREL/TP-510-41168; TRN: US200719%%596 United States 10.2172/902168 TRN: US200719%%596 NREL English. Golden: National Renewable Energy Lab. (NREL); 2007.
Google Scholar
Worley M, Yale J. Biomass gasification technology assessment: consolidated reportNREL/SR-5100-57085; Other: LFA-2-22480-01 United States 10.2172/1059145 Other: LFA-2-22480-01 NREL English. Golden: National Renewable Energy Lab. (NREL); 2012.
Book
Google Scholar
Hu M, Gao L, Chen ZH, Ma CF, Zhou Y, Chen J, et al. Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust. Energ Conver Manage. 2016;111:409–16. https://doi.org/10.1016/j.enconman.2015.12.064.
Article
CAS
Google Scholar
Li HH, Chen ZH, Huo C, Hu M, Guo DB, Xiao B. Effect of bioleaching on hydrogen-rich gas production by steam gasification of sewage sludge. Energ Conver Manage. 2015;106:1212–8. https://doi.org/10.1016/j.enconman.2015.10.048.
Article
CAS
Google Scholar
Choi YK, Ko JH, Kim JS. Gasification of dried sewage sludge using an innovative three-stage gasifier: clean and H-2-rich gas production using condensers as the only secondary tar removal apparatus. Fuel. 2018;216:810–7. https://doi.org/10.1016/j.fuel.2017.12.068.
Article
CAS
Google Scholar
Devi L, Ptasinski KJ, Janssen F. A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy. 2003;24(2):125–40. https://doi.org/10.1016/s0961-9534(02)00102-2.
Article
CAS
Google Scholar
Peterson AA, Vogel F, Lachance RP, Fröling M, Antal JMJ, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energ Environ Sci. 2008;1:32–65. https://doi.org/10.1039/b810100k.
Article
CAS
Google Scholar
Mulchandani A, Westerhoff P. Recovery opportunities for metals and energy from sewage sludges. Bioresour Technol. 2016;215:215–26. https://doi.org/10.1016/j.biortech.2016.03.075.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W-T, Zhang Y, Zhang J, Yu G, Schideman LC, Zhang P, et al. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresour Technol. 2014;152:130–9. https://doi.org/10.1016/j.biortech.2013.10.111.
Article
CAS
PubMed
Google Scholar
Reddy SN, Nanda S, Dalai AK, Kozinski JA. Supercritical water gasification of biomass for hydrogen production. Int J Hydrogen Energy. 2014;39(13):6912–26. https://doi.org/10.1016/j.ijhydene.2014.02.125.
Article
CAS
Google Scholar
Yakaboylu O, Harinck J, Smit KG, de Jong W. Supercritical water gasification of biomass: a literature and technology overview. Energies. 2015;8(2):859–94. https://doi.org/10.3390/en8020859.
Article
CAS
Google Scholar
Garcia DJ, You F. Systems engineering opportunities for agricultural and organic waste management in the food-water-energy nexus. Curr Opin Chem Eng. 2017;18:23–31. https://doi.org/10.1016/j.coche.2017.08.004.
Article
Google Scholar
Garcia DJ, You F. The water-energy-food nexus and process systems engineering: a new focus. Comput Chem Eng. 2016;91:49–67. https://doi.org/10.1016/j.compchemeng.2016.03.003.
Article
CAS
Google Scholar
Yue D, You F, Snyder SW. Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng. 2014;66:36–56. https://doi.org/10.1016/j.compchemeng.2013.11.016.
Article
CAS
Google Scholar
Egan M. Biosolids management strategies: an evaluation of energy production as an alternative to land application. Environ Sci Pollut Res. 2013;20(7):4299–310.
Article
CAS
Google Scholar
Wright MM, Satrio JA, Brown RC, Daugaard DE, Hsu DD. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Golden: NREL/TP-6A20–46586; National Renewable Energy Lab. (NREL); 2010.
Book
Google Scholar
Gebreslassie BH, Slivinsky M, Wang B, You F. Life cycle optimization for sustainable design and operations of hydrocarbon biorefinery via fast pyrolysis, hydrotreating and hydrocracking. Comput Chem Eng. 2013;50:71–91. https://doi.org/10.1016/j.compchemeng.2012.10.013.
Article
CAS
Google Scholar
McCarty PL, Bae J, Kim J. Domestic wastewater treatment as a net energy producer–can this be achieved? Environ Sci Technol. 2011;45(17):7100–6. https://doi.org/10.1021/es2014264.
Article
CAS
PubMed
Google Scholar
Nicoletti J, Ning C, You F. Incorporating agricultural waste-to-energy pathways into biomass product and process network through data-driven nonlinear adaptive robust optimization. Energy. 2019;180:556–71. https://doi.org/10.1016/j.energy.2019.05.096.
Article
Google Scholar
Zhang QG, Hu JJ, Lee DJ, Chang YJ, Lee YJ. Sludge treatment: current research trends. Bioresour Technol. 2017;243:1159–72. https://doi.org/10.1016/j.biortech.2017.07.070.
Article
CAS
PubMed
Google Scholar
Bondarczuk K, Markowicz A, Piotrowska-Seget Z. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application. Environ Int. 2016;87:49–55. https://doi.org/10.1016/j.envint.2015.11.011.
Article
CAS
PubMed
Google Scholar
Angst TE, Sohi SP. Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy. 2013;5(2):221–6. https://doi.org/10.1111/gcbb.12023.
Article
CAS
Google Scholar
Mohammadi A, Cowie AL, Cacho O, Kristiansen P, Mai TLA, Joseph S. Biochar addition in rice farming systems: economic and energy benefits. Energy. 2017;140:415–25. https://doi.org/10.1016/j.energy.2017.08.116.
Article
Google Scholar
Jeffery S, Abalos D, Prodana M, Bastos AC, van Groenigen JW, Hungate BA, et al. Biochar boosts tropical but not temperate crop yields. Environ Res Lett. 2017;12(5). https://doi.org/10.1088/1748-9326/aa67bd.
Jeffery S, Verheijen FGA, van der Velde M, Bastos AC. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ. 2011;144(1):175–87. https://doi.org/10.1016/j.agee.2011.08.015.
Article
Google Scholar
Van Doren LG, Posmanik R, Bicalho FA, Tester JW, Sills DL. Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresour Technol. 2017;225:67–74. https://doi.org/10.1016/j.biortech.2016.11.030.
Article
CAS
Google Scholar
Bloecher C, Niewersch C, Melin T. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration. Water Res. 2012;46(6):2009–19. https://doi.org/10.1016/j.watres.2012.01.022.
Article
CAS
Google Scholar
de Bashan LE, Bashan Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res. 2004;38(19):4222–46. https://doi.org/10.1016/j.watres.2004.07.014.
Article
CAS
PubMed
Google Scholar
Kumar R, Pal P. Assessing the feasibility of N and P recovery by struvite precipitation from nutrient-rich wastewater: a review. Environ Sci Pollut Res. 2015;22(22):17453–64.
Article
CAS
Google Scholar
Lesjean B, Gnirss R, Adam C, Kraume M, Luck F. Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling. Water Sci Technol. 2003;48(1):87–94.
Article
CAS
Google Scholar
Munch EV, Barr K. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Water Res. 2001;35(1):151–9. https://doi.org/10.1016/s0043-1354(00)00236-0.
Article
CAS
PubMed
Google Scholar
Leng LJ, Yuan XZ, Huang HJ, Jiang HW, Chen XH, Zeng GM. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour Technol. 2014;167:144–50. https://doi.org/10.1016/j.biortech.2014.05.119.
Article
CAS
PubMed
Google Scholar
Huang HJ, Yuan XZ. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour Technol. 2016;200:991–8. https://doi.org/10.1016/j.biortech.2015.10.099.
Article
CAS
PubMed
Google Scholar
Yuan XZ, Leng LJ, Huang HJ, Chen XH, Wang H, Xiao ZH, et al. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere. 2015;120:645–52. https://doi.org/10.1016/j.chemosphere.2014.10.010.
Article
CAS
PubMed
Google Scholar
Huang HJ, Yuan XZ, Zeng GM, Zhu HN, Li H, Liu ZF, et al. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge. Bioresour Technol. 2011;102(22):10346–51. https://doi.org/10.1016/j.biortech.2011.08.117.
Article
CAS
PubMed
Google Scholar
Shi WS, Liu CG, Ding DH, Lei ZF, Yang YN, Feng CP, et al. Immobilization of heavy metals in sewage sludge by using subcritical water technology. Bioresour Technol. 2013;137:18–24. https://doi.org/10.1016/j.biortech.2013.03.106.
Article
CAS
PubMed
Google Scholar
Li L, Xu ZR, Zhang CL, Bao JP, Dai XX. Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge. Bioresour Technol. 2012;121:169–75. https://doi.org/10.1016/j.biortech.2012.06.084.
Article
CAS
PubMed
Google Scholar
Corominas L, Foley J, Guest JS, Hospido A, Larsen HF, Morera S, et al. Life cycle assessment applied to wastewater treatment: state of the art. Water Res. 2013;47(15):5480–92. https://doi.org/10.1016/j.watres.2013.06.049.
Article
CAS
PubMed
Google Scholar
Gong J, You F. Sustainable design and synthesis of energy systems. Curr Opin Chem Eng. 2015;10:77–86. https://doi.org/10.1016/j.coche.2015.09.001.
Article
Google Scholar
Yoshida H, Christensen TH, Scheutz C. Life cycle assessment of sewage sludge management: a review. Waste Manag Res. 2013;31(11):1083–101. https://doi.org/10.1177/0734242x13504446.
Article
PubMed
Google Scholar
Suh YJ, Rousseaux P. An LCA of alternative wastewater sludge treatment scenarios. Resources Conserv Recycling. 2002;35(3):191–200. https://doi.org/10.1016/s0921-3449(01)00120-3.
Article
Google Scholar
Xu CQ, Chen W, Hong JL. Life-cycle environmental and economic assessment of sewage sludge treatment in China. J Clean Prod. 2014;67:79–87. https://doi.org/10.1016/j.jclepro.2013.12.002.
Article
CAS
Google Scholar
Cao YC, Pawlowski A. Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications. Bioresour Technol. 2013;127:81–91. https://doi.org/10.1016/j.biortech.2012.09.135.
Article
CAS
PubMed
Google Scholar
Fernandez-Lopez M, Puig-Gamero M, Lopez-Gonzalez D, Avalos-Ramirez A, Valverde J, Sanchez-Silva L. Life cycle assessment of swine and dairy manure: pyrolysis and combustion processes. Bioresour Technol. 2015;182:184–92. https://doi.org/10.1016/j.biortech.2015.01.140.
Article
CAS
PubMed
Google Scholar
Bridgwater AV, Toft AJ, Brammer JG. A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sustain Energy Rev. 2002;6(3):181–248. https://doi.org/10.1016/s1364-0321(01)00010-7.
Article
CAS
Google Scholar
Kim Y, Parker W. A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil. Bioresour Technol. 2008;99(5):1409–16. https://doi.org/10.1016/j.biortech.2007.01.056.
Article
CAS
PubMed
Google Scholar
Werle S, Sobek S. Gasification of sewage sludge within a circular economy perspective: a polish case study. Environ Sci Pollut Res. 2019;26(35):35422–32. https://doi.org/10.1007/s11356-019-05897-2.
Article
CAS
Google Scholar
Lumley NPG, Ramey DF, Prieto AL, Braun RJ, Cath TY, Porter JM. Techno-economic analysis of wastewater sludge gasification: a decentralized urban perspective. Bioresour Technol. 2014;161:385–94. https://doi.org/10.1016/j.biortech.2014.03.040.
Article
CAS
PubMed
Google Scholar
Zhu YH, Biddy MJ, Jones SB, Elliott DC, Schmidt AJ. Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading. Appl Energy. 2014;129:384–94. https://doi.org/10.1016/j.apenergy.2014.03.053.
Article
CAS
Google Scholar
Jones SB, Zhu Y, Anderson DB, Hallen RT, Elliott DC, Schmidt AJ, et al. Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading. Richland: PNNL-23227; Pacific Northwest National Lab. (PNNL); 2014.
Book
Google Scholar
Swanson RM, Platon A, Satrio JA, Brown RC, Hsu DD. Techno-economic analysis of biofuels production based on gasification. Golden: NREL/TP-6A20–46587; National Renewable Energy Lab. (NREL); 2010.
Book
Google Scholar
Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, et al. Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel. 2010;89:S29–35. https://doi.org/10.1016/j.fuel.2010.07.015.
Article
CAS
Google Scholar
Bora RR, Lei M, Tester JW, Lehmann J, You F. Life cycle assessment and Technoeconomic analysis of thermochemical conversion technologies applied to poultry litter with energy and nutrient recovery. ACS Sustain Chem Eng. 2020;8(22):8436–47. https://doi.org/10.1021/acssuschemeng.0c02860.
Article
CAS
Google Scholar
Zhao N, Lehmann J, You F. Poultry waste valorization via pyrolysis technologies: economic and environmental life cycle optimization for sustainable bioenergy systems. ACS Sustain Chem Eng. 2020;8(11):4633–46. https://doi.org/10.1021/acssuschemeng.0c00704.
Article
CAS
Google Scholar
Gherghel A, Teodosiu C, De Gisi S. A review on wastewater sludge valorisation and its challenges in the context of circular economy. J Clean Prod. 2019;228:244–63. https://doi.org/10.1016/j.jclepro.2019.04.240.
Article
CAS
Google Scholar
Garcia DJ, Lovett BM, You F. Considering agricultural wastes and ecosystem services in food-energy-water-waste nexus system design. J Clean Prod. 2019;228:941–55. https://doi.org/10.1016/j.jclepro.2019.04.314.
Article
Google Scholar
Smol M. The importance of sustainable phosphorus management in the circular economy (CE) model: the polish case study. J Material Cycles Waste Manage. 2019;21(2):227–38. https://doi.org/10.1007/s10163-018-0794-6.
Article
CAS
Google Scholar
Meyer S, Glaser B, Quicker P. Technical, economical, and climate-related aspects of biochar production technologies: a literature review. Environ Sci Technol. 2011;45(22):9473–83. https://doi.org/10.1021/es201792c.
Article
CAS
PubMed
Google Scholar
Lehmann J, Joseph S. Biochar for environmental management : science, technology and implementation. 2nd ed. London: Routledge; 2015.
Google Scholar
Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol. 2010;44(2):827–33. https://doi.org/10.1021/es902266r.
Article
CAS
PubMed
Google Scholar
Freeman CJ, Jones SB, Padmaperuma AB, Santosa DM, Valkenburg C, Shinn J. Initial assessment of U.S. refineries for purposes of potential bio-based oil insertions. Richland: PNNL-22432; Pacific Northwest National Lab. (PNNL); 2013.
Book
Google Scholar