Cho HU, Park JM. Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresour Technol. 2018;256(December 2017):502–8. https://doi.org/10.1016/j.biortech.2018.02.010.
Article
CAS
PubMed
Google Scholar
Miazek K, Remacle C, Richel A, Goffin D. Beech wood Fagus sylvatica dilute-acid hydrolysate as a feedstock to support Chlorella sorokiniana biomass, fatty acid and pigment production. Bioresour Technol. 2017;230:122–31.
Article
CAS
PubMed
Google Scholar
Li X, Xu H, Wu Q. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng. 2007;98:764–71. https://doi.org/10.1002/bit.21489.
Article
CAS
PubMed
Google Scholar
Abomohra AEF, El-Sheekh M, Hanelt D. Screening of marine microalgae isolated from the hypersaline Bardawil lagoon for biodiesel feedstock. Renew Energy. 2017;101:1266–72. https://doi.org/10.1016/j.renene.2016.10.015.
Article
CAS
Google Scholar
Shen X-F, Chu F-F, Lam PKS, Zeng RJ. Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Res. 2015;81:294–300. https://doi.org/10.1016/j.watres.2015.06.003.
Article
CAS
PubMed
Google Scholar
Patel A, Matsakas L, Rova U, Christakopoulos P. Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnol Biofuels. 2018;11:169. https://doi.org/10.1186/s13068-018-1173-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA. Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol. 2007;98:560–4.
Article
CAS
PubMed
Google Scholar
Karpagam R, Preeti R, Ashokkumar B, Varalakshmi P. Ecotoxicology and environmental safety enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production. Ecotoxicol Environ Saf. 2015;121:253–7. https://doi.org/10.1016/j.ecoenv.2015.03.015.
Article
CAS
PubMed
Google Scholar
Patel A, Mikes F, Bühler S, Matsakas L. Valorization of brewers’ spent grain for the production of lipids by oleaginous yeast. Molecules. 2018;23:3052. https://doi.org/10.3390/molecules23123052.
Article
CAS
PubMed Central
Google Scholar
Bonturi N, Matsakas L, Nilsson R, Christakopoulos P, Miranda EA, Berglund KA, et al. Single cell oil producing yeasts Lipomyces starkeyi and Rhodosporidium toruloides: selection of extraction strategies and biodiesel property prediction. Energies. 2015;8:5040–52.
Article
CAS
Google Scholar
Xue F, Miao J, Zhang X, Luo H, Tan T. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol. 2008;99:5923–7. https://doi.org/10.1016/j.biortech.2007.04.046.
Article
CAS
PubMed
Google Scholar
Patel A, Matsakas L. A comparative study on de novo and ex novo lipid fermentation by oleaginous yeast using glucose and sonicated waste cooking oil. Ultrason Sonochem. 2018. https://doi.org/10.1016/j.ultsonch.2018.12.010.
Article
CAS
PubMed
Google Scholar
Matsakas L, Sterioti A, Rova U, Christakopoulos P. Use of dried sweet sorghum for the efficient production of lipids by the yeast Lipomyces starkeyi CBS 1807. Ind Crop Prod. 2014;62:367–72. https://doi.org/10.1016/j.indcrop.2014.09.011.
Article
CAS
Google Scholar
Matsakas L, Giannakou M, Vörös D. Effect of synthetic and natural media on lipid production from fusarium oxysporum. Electron J Biotechnol. 2017;30:95–102.
Article
CAS
Google Scholar
Yang Y, Hu B. Investigation on the cultivation conditions of a newly isolated fusarium fungal strain for enhanced lipid production. Appl Biochem Biotechnol. 2018. https://doi.org/10.1007/s12010-018-2870-8.
Article
PubMed
CAS
Google Scholar
Nouri H, Moghimi H, Nikbakht Rad M, Ostovar M, Farazandeh Mehr SS, Ghanaatian F, et al. Enhanced growth and lipid production in oleaginous fungus, Sarocladium kiliense ADH17: study on fatty acid profiling and prediction of biodiesel properties. Renew Energy. 2019;135:10–20. https://doi.org/10.1016/j.renene.2018.11.104.
Article
CAS
Google Scholar
Eroshin VK, Satroutdinov AD, Dedyukhina EG, Chistyakova TI. Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochem. 2000;35:1171–5.
Article
CAS
Google Scholar
Subhash GV, Mohan SV. Bioresource technology biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol. 2011;102:9286–90. https://doi.org/10.1016/j.biortech.2011.06.084.
Article
CAS
Google Scholar
Kosa M, Ragauskas AJ. Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chem. 2013;15:2070–4.
Article
CAS
Google Scholar
Kumar S, Gupta N, Pakshirajan K. Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application. J Environ Chem Eng. 2015;3:1630–6. https://doi.org/10.1016/j.jece.2015.05.030.
Article
CAS
Google Scholar
Goswami L, Tejas Namboodiri MM, Vinoth Kumar R, Pakshirajan K, Pugazhenthi G. Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew Energy. 2017;105:400–6. https://doi.org/10.1016/j.renene.2016.12.044.
Article
CAS
Google Scholar
Gouda MK, Omar SH, Aouad LM. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol. 2008;24:1703–11.
Article
CAS
Google Scholar
Kurosawa K, Wewetzer SJ, Sinskey AJ. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels. 2013;6:1–13.
Article
CAS
Google Scholar
Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002;51:1–51.
Article
CAS
PubMed
Google Scholar
Kolouchová I, Maťátková O, Sigler K, Masák J, Řezanka T. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation. Folia Microbiol (Praha). 2016;61:431–8.
Article
CAS
Google Scholar
Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14:217–32. https://doi.org/10.1016/j.rser.2009.07.020.
Article
CAS
Google Scholar
Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. Biodiesel production from oleaginous microorganisms. Renew Energy. 2009;34:1–5. https://doi.org/10.1016/j.renene.2008.04.014.
Article
CAS
Google Scholar
Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, et al. Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv. 2014;32:1336–60. https://doi.org/10.1016/j.biotechadv.2014.08.003.
Article
CAS
PubMed
Google Scholar
Levering J, Broddrick J, Zengler K. Engineering of oleaginous organisms for lipid production. Curr Opin Biotechnol. 2015;36:32–9. https://doi.org/10.1016/j.copbio.2015.08.001.
Article
CAS
PubMed
Google Scholar
Mubarak M, Shaija A, Suchithra TV. A review on the extraction of lipid from microalgae for biodiesel production. Algal Res. 2015;7:117–23. https://doi.org/10.1016/j.algal.2014.10.008.
Article
Google Scholar
Lee TH, Chang JS, Wang HY. Current developments in high-throughput analysis for microalgae cellular contents. Biotechnol J. 2013;8:1301–14.
Article
CAS
PubMed
Google Scholar
Elsey D, Jameson D, Raleigh B, Cooney MJ. Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods. 2007;68:639–42. https://doi.org/10.1016/j.mimet.2006.11.008.
Article
CAS
PubMed
Google Scholar
Hounslow E, Noirel J, Gilmour DJ, Wright PC. Lipid quantification techniques for screening oleaginous species of microalgae for biofuel production. Eur J Lipid Sci Technol. 2017;119:1–24.
Article
CAS
Google Scholar
Rumin J, Bonnefond H, Saint-Jean B, Rouxel C, Sciandra A, Bernard O, et al. The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol Biofuels. 2015;8:1–16.
Article
CAS
Google Scholar
Alemán-Nava GS, Cuellar-Bermudez SP, Cuaresma M, Bosma R, Muylaert K, Ritmann BE, et al. How to us Nile red, a selective fluorescent stain for microalgal neutral lipids. J Microbiol Methods. 2016;128:74–9.
Article
PubMed
CAS
Google Scholar
De la Hoz SH, Ayidzoe W, Ben-Zvi A, Burrell REE, McCaffrey WCC. Improving the reliability of fluorescence-based neutral lipid content measurements in microalgal cultures. Algal Res. 2012;1:176–84. https://doi.org/10.1016/j.algal.2012.07.004.
Article
Google Scholar
Cooksey KE, Guckert JB, Williams SA, Callis PR. Fluorometric determination of the neutral lipid content of microalgal cells using Nile red. J Microbiol Methods. 1987;6:333–45. https://doi.org/10.1016/0167-7012(87)90019-4.
Article
CAS
Google Scholar
Ami D, Posteri R, Mereghetti P, Porro D, Doglia SM, Branduardi P. Fourier transform infrared spectroscopy as a method to study lipid accumulation in oleaginous yeasts. Biotechnol Biofuels. 2014;7:12. https://doi.org/10.1186/1754-6834-7-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarpal AS, Teixeira CMLL, Silva PRM, da Costa Monteiro TV, da Silva JI, da Cunha VS, et al. NMR techniques for determination of lipid content in microalgal biomass and their use in monitoring the cultivation with biodiesel potential. Appl Microbiol Biotechnol. 2016;100:2471–85.
Article
CAS
PubMed
Google Scholar
Signori L, Ami D, Posteri R, Giuzzi A, Mereghetti P, Porro D, et al. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts. Microb Cell Factories. 2016;15:1–19.
Article
CAS
Google Scholar
Fon Sing S, Isdepsky A, Borowitzka MA, Moheimani NR. Production of biofuels from microalgae. Mitig Adapt Strateg Glob Chang. 2013;18:47–72.
Article
Google Scholar
Sarpal AS, Silva PRM, Martins JL, Amaral JJ, Monnerat MM, Cunha VS, et al. Biodiesel potential of oleaginous yeast biomass by NMR spectroscopic techniques. Energy Fuels. 2014;28:3766–77.
Article
CAS
Google Scholar
Patel A, Arora N, Mehtani J, Pruthi V, Pruthi PA. Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production. Renew Sustain Energy Rev. 2017;77(March):604–16. https://doi.org/10.1016/j.rser.2017.04.016.
Article
CAS
Google Scholar
Bigelow NW, Hardin WR, Barker JP, Ryken SA, MacRae AC, Cattolico RA. A comprehensive GC-MS sub-microscale assay for fatty acids and its applications. J Am Oil Chem Soc. 2011;88:1329–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Han J, Wang Z, Liu J, Wei J, Xiong S, Zhao Z. Mass spectrometry methodology in lipid analysis. Int J Mol Sci. 2014;15:10492–507.
Article
PubMed
PubMed Central
CAS
Google Scholar
Halim R, Danquah MK, Webley PA. Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv. 2012;30:709–32. https://doi.org/10.1016/j.biotechadv.2012.01.001.
Article
CAS
PubMed
Google Scholar
Raventos M, Duarte S, Alarcon R. Application and possibilities of supercritical CO2 extraction in food processing industry: an overview. Food Sci Technol Int. 2002;8:269–84. https://doi.org/10.1177/1082013202008005451.
Article
CAS
Google Scholar
Safi C, Camy S, Frances C, Varela MM, Badia EC, Pontalier PY, et al. Extraction of lipids and pigments of Chlorella vulgaris by supercritical carbon dioxide: influence of bead milling on extraction performance. J Appl Phycol. 2014;26:1711–8.
Article
CAS
Google Scholar
Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, et al. Application of supercritical CO2in lipid extraction - a review. J Food Eng. 2009;95:240–53. https://doi.org/10.1016/j.jfoodeng.2009.06.026.
Article
CAS
Google Scholar
Santana A, Jesus S, Larrayoz MA, Filho RM. Supercritical carbon dioxide extraction of algal lipids for the biodiesel production. Procedia Eng. 2012;42(August):1755–61.
Article
CAS
Google Scholar
Sharif KM, Rahman MM, Azmir J, Mohamed A, Jahurul MHA, Sahena F, et al. Experimental design of supercritical fluid extraction - a review. J Food Eng. 2014;124:105–16.
Article
CAS
Google Scholar
Paudel A, Jessop MJ, Stubbins SH, Champagne P, Jessop PG. Extraction of lipids from microalgae using CO2-expanded methanol and liquid CO2. Bioresour Technol. 2015;184:286–90. https://doi.org/10.1016/j.biortech.2014.11.111.
Article
CAS
PubMed
Google Scholar
Orellana JL, Smith TD, Kitchens CL. Liquid and supercritical CO2extraction of fat from rendered materials. J Supercrit Fluids. 2013;79:55–61. https://doi.org/10.1016/j.supflu.2013.01.022.
Article
CAS
Google Scholar
Cheng J, Sun J, Huang Y, Zhou J, Cen K. Fractal microstructure characterization of wet microalgal cells disrupted with ultrasonic cavitation for lipid extraction. Bioresour Technol. 2014;170:138–43. https://doi.org/10.1016/j.biortech.2014.07.090.
Article
CAS
PubMed
Google Scholar
Tan XB, Lam MK, Uemura Y, Lim JW, Wong CY, Lee KT. Cultivation of microalgae for biodiesel production: a review on upstream and downstream processing. Chinese J Chem Eng. 2018;26:17–30. https://doi.org/10.1016/j.cjche.2017.08.010.
Article
Google Scholar
Ambat I, Srivastava V, Sillanpää M. Recent advancement in biodiesel production methodologies using various feedstock: a review. Renew Sust Energ Rev. 2018;90(February 2017):356–69. https://doi.org/10.1016/j.rser.2018.03.069.
Article
CAS
Google Scholar
Postma PR, Miron TL, Olivieri G, Barbosa MJ, Wijffels RH, Eppink MHM. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour Technol. 2015;184:297–304. https://doi.org/10.1016/j.biortech.2014.09.033.
Article
CAS
PubMed
Google Scholar
Dejoye Tanzi C, Abert Vian M, Chemat F. New procedure for extraction of algal lipids from wet biomass: a green clean and scalable process. Bioresour Technol. 2013;134:271–5. https://doi.org/10.1016/j.biortech.2013.01.168.
Article
CAS
PubMed
Google Scholar
Byreddy AR, Gupta A, Barrow CJ, Puri M. Comparison of cell disruption methods for improving lipid extraction from thraustochytrid strains. Mar Drugs. 2015;13:5111–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park JY, Lee K, Choi SA, Jeong MJ, Kim B, Lee JS, et al. Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris. Renew Energy. 2015;79:3–8. https://doi.org/10.1016/j.renene.2014.10.001.
Article
CAS
Google Scholar
Kwak M, Kang SG, Hong WK, Han JI, Chang YK. Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer. Bioprocess Biosyst Eng. 2018;41:671–8.
Article
CAS
PubMed
Google Scholar
Sathish A, Sims RC. Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour Technol. 2012;118:643–7. https://doi.org/10.1016/j.biortech.2012.05.118.
Article
CAS
PubMed
Google Scholar
Yusaf T, Al-Juboori RA. Alternative methods of microorganism disruption for agricultural applications. Appl Energy. 2014;114:909–23.
Article
Google Scholar
Randall RC, Lee H, Ozretich RJ, Lake JL, Pruell RJ. Evaluation of selected lipid methods for normalizing pollutant bioaccumulation. Environ Toxicol Chem. 1991;10:1431–6.
Article
CAS
Google Scholar
Randall RC, Young DR, Lee H, Echols SF. Lipid methodology and pollutant normalization relationships for neutral nonpolar organic pollutants. Environ Toxicol Chem. 1998;17:788–91.
Article
CAS
Google Scholar
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008;54:621–39.
Article
CAS
PubMed
Google Scholar
Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy. 2010;2:1–15.
Article
CAS
Google Scholar
Folch J, Lees M, Sloane Stanley G. A simple method of isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.
CAS
PubMed
Google Scholar
Bligh E, Dyler WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.
Article
CAS
PubMed
Google Scholar
Van Handel E. Rapid determination of total lipids in mosquitoes. J Am Mosq Control Assoc. 1985;1:302–4.
PubMed
Google Scholar
Cheng CH, Du TB, Pi HC, Jang SM, Lin YH, Lee HT. Comparative study of lipid extraction from microalgae by organic solvent and supercritical CO2. Bioresour Technol. 2011;102:10151–3.
Article
CAS
PubMed
Google Scholar
White S, Anandraj A, Bux F. PAM fluorometry as a tool to assess microalgal nutrient stress and monitor cellular neutral lipids. Bioresour Technol. 2011;102:1675–82. https://doi.org/10.1016/j.biortech.2010.09.097.
Article
CAS
PubMed
Google Scholar
McNichol J, MacDougall KM, Melanson JE, McGinn PJ. Suitability of soxhlet extraction to quantify microalgal fatty acids as determined by comparison with in situ transesterification. Lipids. 2012;47:195–207.
Article
CAS
PubMed
Google Scholar
Patel A, Pravez M, Deeba F, Pruthi V, Singh RP, Pruthi PA. Boosting accumulation of neutral lipids in Rhodosporidium kratochvilovae HIMPA1 grown on hemp (Cannabis sativa Linn) seed aqueous extract as feedstock for biodiesel production. Bioresour Technol. 2014;165(C):214–22. https://doi.org/10.1016/j.biortech.2014.03.142.
Article
CAS
PubMed
Google Scholar
Privett OS, Blank ML, Codding DW, Nickell EC. Lipid analysis by quantitative thin-layer chromatography. J Am Oil Chem Soc. 1965;42:381–93 https://link.springer.com/article/10.1007/BF02635573.
Article
CAS
PubMed
Google Scholar
Peterson BL, Cummings BS. A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr. 2006;20:227–43.
Article
CAS
PubMed
Google Scholar
Dyńska-Kukulska K, Ciesielski W. Methods of extraction and thin-layer chromatography determination of phospholipids in biological samples. Rev Anal Chem. 2012;31:43–56.
Article
CAS
Google Scholar
Fuchs B, Süß R, Teuber K, Eibisch M, Schiller J. Lipid analysis by thin-layer chromatography-a review of the current state. J Chromatogr A. 2011;1218:2754–74. https://doi.org/10.1016/j.chroma.2010.11.066.
Article
CAS
PubMed
Google Scholar
Beattie SE, Johnson LA, Hammond EG, Dixon PM. Lipid synthesis and encapsulation by Cryptococcus curvatus by Major: food science and technology program of study committee; 2009.
Google Scholar
Tsigie YA, Wang C-Y, Truong C-T, Ju Y, Asteraye Y, Wang C-Y, et al. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol. 2011;102:9216–22. https://doi.org/10.1016/j.biortech.2011.06.047.
Article
CAS
PubMed
Google Scholar
Gauglitz EJ, Malins DC. The preparation of polyunsaturated aliphatic aldehydes via the acyloin condensation. J Am Oil Chem Soc. 1960;37:425–7.
Article
CAS
Google Scholar
Karlsson K-A, Norrby A, Samuelsson B. Use of thin-layer chromatography for the preliminary diagnosis of Refsum’s disease (Heredopathia atactica polyneuritiformis). Biochim Biophys Acta - Lipids Lipid Metab. 1967;144:162–4. https://doi.org/10.1016/0005-2760(67)90089-6.
Article
CAS
Google Scholar
Perona J, Gutierrez V. Analysis of neutral lipids: triacylglycerols. In: Handbook of food analysis: physical characterization and nutrient analysis; 2004. p. 275–312.
Google Scholar
Christie WW. Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light-scattering) detection. J Lipid Res. 1985;26:507–12.
CAS
PubMed
Google Scholar
Ross MM, Neihof RA, Campana JE. Direct fatty acid profiling of complex lipids in intact algae by fast-atom-bombardment mass spectrometry. Anal Chim Acta. 1986;181(C):149–57.
Article
CAS
Google Scholar
Fuchs B, Süß R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res. 2010;49:450–75. https://doi.org/10.1016/j.plipres.2010.07.001.
Article
CAS
PubMed
Google Scholar
Liu J, Wang H, Manicke NE, Lin J, Cooks RG. Application of paper spray ionization development, characterization, and application of paper spray ionization. Anal Chem. 2010;82:2463–71.
Article
CAS
PubMed
Google Scholar
Rězanka T, Vokoun J, Slavíček J, Podojil M. Determination of fatty acids in algae by capillary gas chromatography-mass spectrometry. J Chromatogr A. 1983;268(C):71–8.
Article
Google Scholar
Lu N, Wei D, Jiang XL, Chen F, Yang ST. Fatty acids profiling and biomarker identification in snow alga Chlamydomonas Nivalis by NaCl stress using GC/MS and multivariate statistical analysis. Anal Lett. 2012;45:1172–83.
Article
CAS
Google Scholar
Barupal DK, Kind T, Kothari SL, Lee DY, Fiehn O. Hydrocarbon phenotyping of algal species using pyrolysis-gas chromatography mass spectrometry. BMC Biotechnol. 2010;10:1–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Biller P, Ross AB. Pyrolysis GC-MS as a novel analysis technique to determine the biochemical composition of microalgae. Algal Res. 2014;6(PA):91–7. https://doi.org/10.1016/j.algal.2014.09.009.
Article
Google Scholar
Danielewicz MA, Anderson LA, Franz AK. Triacylglycerol profiling of marine microalgae by mass spectrometry. J Lipid Res. 2011;52:2101–8. https://doi.org/10.1194/jlr.D018408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akoto L, Stellaard F, Irth H, Vreuls RJJ, Pel R. Improved fatty acid detection in micro-algae and aquatic meiofauna species using a direct thermal desorption interface combined with comprehensive gas chromatography-time-of-flight mass spectrometry. J Chromatogr A. 2008;1186:254–61.
Article
CAS
PubMed
Google Scholar
Oradu SA, Cooks RG. Multistep mass spectrometry methodology for direct characterization of polar lipids in green microalgae using paper spray ionization. Anal Chem. 2012;84:10576–85.
Article
CAS
PubMed
Google Scholar
Samburova V, Lemos MS, Hiibel S, Kent Hoekman S, Cushman JC, Zielinska B. Analysis of triacylglycerols and free fatty acids in algae using ultra-performance liquid chromatography mass spectrometry. J Am Oil Chem Soc. 2013;90:53–64.
Article
CAS
Google Scholar
Kobayashi N, Noel EA, Barnes A, Rosenberg J, Dirusso C, Black P, et al. Rapid detection and quantification of triacylglycerol by HPLC-ELSD in chlamydomonas reinhardtii and chlorella strains. Lipids. 2013;48:1035–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mansour MP. Reversed-phase high-performance liquid chromatography purification of methyl esters of C16-C28 polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)]. J Chromatogr A. 2005;1097:54–8.
Article
CAS
PubMed
Google Scholar
Jones J, Manning S, Montoya M, Keller K, Poenie M. Extraction of algal lipids and their analysis by HPLC and mass spectrometry. J Am Oil Chem Soc. 2012;89:1371–81. https://doi.org/10.1007/s11746-012-2044-8.
Article
CAS
Google Scholar
Cavonius LR, Carlsson NG, Undeland I. Quantification of total fatty acids in microalgae: comparison of extraction and transesterification methods. Anal Bioanal Chem. 2014;406:7313–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hidalgo P, Toro C, Ciudad G, Navia R. Advances in direct transesterification of microalgal biomass for biodiesel production. Rev Environ Sci Biotechnol. 2013;12:179–99.
Article
CAS
Google Scholar
Da Chiu L, Ho SH, Shimada R, Ren NQ, Ozawa T. Rapid in vivo lipid/carbohydrate quantification of single microalgal cell by Raman spectral imaging to reveal salinity-induced starch-to-lipid shift. Biotechnol Biofuels. 2017;10:1–9.
Article
CAS
Google Scholar
Xiong W, Liu L, Wu C, Yang C, Wu Q. 13C-tracer and gas chromatography-mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides. Plant Physiol. 2010;154:1001–11. https://doi.org/10.1104/pp.110.158956.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akoto L, Pel R, Irth H, Brinkman UAT, Vreuls RJJ. Automated GC-MS analysis of raw biological samples: application to fatty acid profiling of aquatic micro-organisms. J Anal Appl Pyrolysis. 2005;73:69–75.
Article
CAS
Google Scholar
Harris GA, Galhena AS, Fern FM. Ambient sampling / ionization mass spectrometry: applications and current trends. Anal Chem. 2011;83:4508–38.
Article
CAS
PubMed
Google Scholar
Laurens LML, Knoshaug EP, Rohrer H, Van Wychen S, Dowe N, Zhang M. Solvent-free spectroscopic method for high-throughput, quantitative screening of fatty acids in yeast biomass. Anal Methods. 2019. https://doi.org/10.1039/C8AY02416B.
Article
CAS
Google Scholar
Kosa G, Kohler A, Tafintseva V, Zimmermann B, Forfang K, Afseth NK, et al. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb Cell Factories. 2017;16:1–12.
Article
CAS
Google Scholar
Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V. FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLoS One. 2017;12:1–17.
Article
CAS
Google Scholar
Stehfest K, Toepel J, Wilhelm C. The application of micro-FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem. 2005;43:717–26.
Article
CAS
PubMed
Google Scholar
Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl- tert -butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49:1137–46. https://doi.org/10.1194/jlr.D700041-JLR200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Driver T, Bajhaiya AK, Allwood JW, Goodacre R, Pittman JK, Dean AP. Metabolic responses of eukaryotic microalgae to environmental stress limit the ability of FT-IR spectroscopy for species identification. Algal Res. 2015;11:148–55.
Article
PubMed
PubMed Central
Google Scholar
Mayers JJ, Flynn KJ, Shields RJ. Rapid determination of bulk microalgal biochemical composition by Fourier-Transform Infrared spectroscopy. Bioresour Technol. 2013;148:215–20.
Article
CAS
PubMed
Google Scholar
Giordano M, Heraud P, Beardall J, Giordano M, Al ET, Kansiz M, et al. Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae ). J Phycol. 2001;37:271–9.
Article
CAS
Google Scholar
Heraud P, Wood BR, Tobin MJ, Beardall J, McNaughton D. Mapping of nutrient-induced biochemical changes in living algal cells using synchrotron infrared microspectroscopy. FEMS Microbiol Lett. 2005;249:219–25.
Article
CAS
PubMed
Google Scholar
Sigee DC, Bahrami F, Estrada B, Webster RE, Dean AP. The influence of phosphorus availability on carbon allocation and P quota in Scenedesmus subspicatus: a synchrotron-based FTIR analysis. Phycologia. 2007;46:583–92. https://doi.org/10.2216/07-14.1.
Article
Google Scholar
James GO, Hocart CH, Hillier W, Chen H, Kordbacheh F, Price GD, et al. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour Technol. 2011;102:3343–51. https://doi.org/10.1016/j.biortech.2010.11.051.
Article
CAS
PubMed
Google Scholar
Dean AP, Sigee DC, Estrada B, Pittman JK. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol. 2010;101:4499–507. https://doi.org/10.1016/j.biortech.2010.01.065.
Article
CAS
PubMed
Google Scholar
Laurens LML, Wolfrum EJ. Feasibility of spectroscopic characterization of algal lipids: Chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. Bioenergy Res. 2011;4:22–35.
Article
Google Scholar
Klsner HJ, Brown CW, Kavarnos GJ. Simultaneous determination of triglycerides, phospholipids, and cholesteryl esters by infrared spectrometry. Anal Chem. 1982;54:1479–85.
Article
Google Scholar
Challagulla V, Nayar S, Walsh K, Fabbro L. Advances in techniques for assessment of microalgal lipids. Crit Rev Biotechnol. 2017;37:566–78.
Article
CAS
PubMed
Google Scholar
Pollesello P, Toffanin R, Murano E, Paoletti S, Rizzo R, Kvam BJ. Lipid extracts from different algal species:1H and13C-NMR spectroscopic studies as a new tool to screen differences in the composition of fatty acids, sterols and carotenoids. J Appl Phycol. 1992;4:315–22.
Article
CAS
Google Scholar
Sarpal AS, Teixeira CMLL, Silva PRM, Lima GM, Silva SR, Monteiro TV, et al. Determination of lipid content of oleaginous microalgal biomass by NMR spectroscopic and GC-MS techniques. Anal Bioanal Chem. 2015;407:3799–816.
Article
CAS
PubMed
Google Scholar
Beal CM, Webber ME, Ruoff RS, Hebner RE. Lipid analysis of Neochloris oleoabundans by liquid state NMR. Biotechnol Bioeng. 2010;106:573–83.
Article
CAS
PubMed
Google Scholar
Arnold AA, Genard B, Zito F, Tremblay R, Warschawski DE, Marcotte I. Identification of lipid and saccharide constituents of whole microalgal cells by13C solid-state NMR. Biochim Biophys Acta Biomembr. 1848;2015:369–77. https://doi.org/10.1016/j.bbamem.2014.07.017.
Article
CAS
Google Scholar
Akhter M, Dutta Majumdar R, Fortier-McGill B, Soong R, Liaghati-Mobarhan Y, Simpson M, et al. Identification of aquatically available carbon from algae through solution-state NMR of whole13C-labelled cells. Anal Bioanal Chem. 2016;408:4357–70. https://doi.org/10.1007/s00216-016-9534-8.
Article
CAS
PubMed
Google Scholar
Davey PT, Hiscox WC, Lucker BF, O’Fallon JV, Chen S, Helms GL. Rapid triacylglyceride detection and quantification in live micro-algal cultures via liquid state1H NMR. Algal Res. 2012;1:166–75. https://doi.org/10.1016/j.algal.2012.07.003.
Article
Google Scholar
Bono MS, Garcia RD, Sri-Jayantha DV, Ahner BA, Kirby BJ. Measurement of lipid accumulation in Chlorella vulgaris via flow cytometry and liquid-state1H NMR spectroscopy for development of an NMR-traceable flow cytometry protocol. PLoS One. 2015;10:1–18. https://doi.org/10.1371/journal.pone.0134846.
Article
CAS
Google Scholar
Andrew ER. Magic angle spinning in solid state n.m.r. spectroscopy. Philos Trans R Soc A Math Phys Eng Sci. 2006;299:505–20.
Article
Google Scholar
Chauton MS, Optun OI, Bathen TF, Volent Z, Gribbestad IS, Johnsen G. HR MAS1H NMR spectroscopy analysis of marine microalgal whole cells. Mar Ecol Prog Ser. 2003;256:57–62.
Article
CAS
Google Scholar
Chauton MS, Størseth TR, Krane J. High-resolution magic angle spinning NMR analysis of whole cells of Chaetoceros muelleri (Bacillariophyceae) and comparison with13C-NMR and distortionless enhancement by polarization transfer13C-NMR analysis of lipophilic extracts. J Phycol. 2004;40:611–8.
Article
CAS
Google Scholar
Wang T, Liu T, Wang Z, Tian X, Yang Y, Guo M, et al. A rapid and accurate quantification method for real-time dynamic analysis of cellular lipids during microalgal fermentation processes in Chlorella protothecoides with low field nuclear magnetic resonance. J Microbiol Methods. 2016;124:13–20. https://doi.org/10.1016/j.mimet.2016.03.003.
Article
CAS
PubMed
Google Scholar
Al Hattab M, Ghaly A. Microalgae oil extraction pre-treatment methods: critical review and comparative analysis. J Fundam Renew Energy Appl. 2015;5. https://doi.org/10.4172/2090-4541.1000172.
Gao C, Xiong W, Zhang Y, Yuan W, Wu Q. Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance. J Microbiol Methods. 2008;75:437–40. https://doi.org/10.1016/j.mimet.2008.07.019.
Article
CAS
PubMed
Google Scholar
Nuzzo G, Gallo C, D’Ippolito G, Cutignano A, Sardo A, Fontana A. Composition and quantitation of microalgal lipids by ERETIC1H NMR method. Mar Drugs. 2013;11:3742–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skogen Chauton M, Røvik Størseth T, Johnsen G. High-resolution magic angle spinning 1 H NMR analysis of whole cells of Thalassiosira pseudonana (Bacillariophyceae): broad range analysis of metabolic composition and nutritional value. J Appl Phycol. 2003;15:533–42. https://doi.org/10.1023/B:JAPH.0000004355.11837.1d.
Article
CAS
Google Scholar
Wei X, Jie D, Cuello JJ, Johnson DJ, Qiu Z, He Y. Microalgal detection by Raman microspectroscopy. TrAC - Trends Anal Chem. 2014;53:33–40. https://doi.org/10.1016/j.trac.2013.09.012.
Article
CAS
Google Scholar
Parab TND, Tomar V. Raman spectroscopy of algae: a review. J Nanomed Nanotechnol. 2012;3. https://doi.org/10.4172/2157-7439.1000131.
Huang G-HH, Chen G, Chen F. Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass Bioenergy. 2009;33:1386–92. https://doi.org/10.1016/j.biombioe.2009.05.022.
Article
CAS
Google Scholar
Weiss TL, Chun HJ, Okada S, Vitha S, Holzenburg A, Laane J, et al. Raman spectroscopy analysis of botryococcene hydrocarbons from the green microalga Botryococcus braunii. J Biol Chem. 2010;285:32458–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM. Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol Bioeng. 2010;105:889–98. https://doi.org/10.1002/bit.22617.
Article
CAS
PubMed
Google Scholar
Lee TH, Chang JS, Wang HY. Rapid and in vivo quantification of cellular lipids in Chlorella vulgaris using near-infrared Raman spectrometry. Anal Chem. 2013;85:2155–60.
Article
CAS
PubMed
Google Scholar
Li K, Cheng J, Ye Q, He Y, Zhou J, Cen K. In vivo kinetics of lipids and astaxanthin evolution in Haematococcus pluvialis mutant under 15% CO2using Raman microspectroscopy. Bioresour Technol. 2017;244:1439–44.
Article
CAS
PubMed
Google Scholar
Meksiarun P, Spegazzini N, Matsui H, Nakajima K, Matsuda Y, Satoa H. In vivo study of lipid accumulation in the microalgae marine diatom Thalassiosira pseudonana using Raman spectroscopy. Appl Spectrosc. 2015;69:45–51.
Article
CAS
PubMed
Google Scholar
Sharma SK, Nelson DR, Abdrabu R, Khraiwesh B, Jijakli K, Arnoux M, et al. An integrative Raman microscopy-based workflow for rapid in situ analysis of microalgal lipid bodies. Biotechnol Biofuels. 2015;8:1–14.
Article
CAS
Google Scholar
Münchberg U, Wagner L, Rohrer C, Voigt K, Rösch P, Jahreis G, et al. Quantitative assessment of the degree of lipid unsaturation in intact Mortierella by Raman microspectroscopy. Anal Bioanal Chem. 2015;407:3303–11.
Article
PubMed
CAS
Google Scholar
Samek O, Zemánek P, Jonáš A, Telle HH. Characterization of oil-producing microalgae using Raman spectroscopy. Laser Phys Lett. 2011;8:701–9.
Article
CAS
Google Scholar
Wang T, Ji Y, Wang Y, Jia J, Li J, Huang S, et al. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnol Biofuels. 2014;7:1–12.
Article
CAS
Google Scholar
Hosokawa M, Ando M, Mukai S, Osada K, Yoshino T, Hamaguchi HO, et al. In vivo live cell imaging for the quantitative monitoring of lipids by using raman microspectroscopy. Anal Chem. 2014;86:8224–30.
Article
CAS
PubMed
Google Scholar
Urban PL, Schmid T, Amantonico A, Zenobi R. Multidimensional analysis of single algal cells by integrating microspectroscopy with mass spectrometry. Anal Chem. 2011;83:1843–9.
Article
CAS
PubMed
Google Scholar
Fu D, Lu FK, Zhang X, Freudiger C, Pernik DR, Holtom G, et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J Am Chem Soc. 2012;134:3623–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
He XN, Allen J, Black PN, Baldacchini T, Huang X, Huang H, et al. Coherent anti-stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion. Biomed Opt Express. 2012;3:2896. https://doi.org/10.1364/BOE.3.002896.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cavonius L, Fink H, Kiskis J, Albers E, Undeland I, Enejder A. Imaging of lipids in microalgae with coherent anti-stokes Raman scattering microscopy. Plant Physiol. 2015;167:603–16. https://doi.org/10.1104/pp.114.252197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jaeger D, Pilger C, Hachmeister H, Oberländer E, Wördenweber R, Wichmann J, et al. Label-free in vivo analysis of intracellular lipid droplets in the oleaginous microalga Monoraphidium neglectum by coherent Raman scattering microscopy. Sci Rep. 2016;6(June):2–10. https://doi.org/10.1038/srep35340.
Article
CAS
Google Scholar
Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S. In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci. 2011;108:3809–14. https://doi.org/10.1073/pnas.1009043108.
Article
PubMed
PubMed Central
Google Scholar
Pořízka P, Prochazková P, Prochazka D, Sládková L, Novotný J, Petrilak M, et al. Algal biomass analysis by laser-based analytical techniques—A review. Sensors (Switzerland). 2014;14:17725–52.
Article
CAS
Google Scholar
Pick U, Rachutin-Zalogin T. Kinetic anomalies in the interactions of Nile red with microalgae. J Microbiol Methods. 2012;88:189–96. https://doi.org/10.1016/j.mimet.2011.10.008.
Article
CAS
PubMed
Google Scholar
Elsey D, Jameson D, Raleigh B, Cooney MJ. Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods. 2007;68:639–42.
Article
CAS
PubMed
Google Scholar
Martinez V, Henary M. Nile red and Nile blue: applications and syntheses of structural analogues. Chem - A Eur J. 2016;22:13764–82.
Article
CAS
Google Scholar
Balduyck L, Veryser C, Goiris K, Bruneel C, Muylaert K, Foubert I. Optimization of a Nile red method for rapid lipid determination in autotrophic, marine microalgae is species dependent. J Microbiol Methods. 2015;118:152–8. https://doi.org/10.1016/j.mimet.2015.09.009.
Article
CAS
PubMed
Google Scholar
Chen W, Sommerfeld M, Hu Q. Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol. 2011;102:135–41. https://doi.org/10.1016/j.biortech.2010.06.076.
Article
CAS
PubMed
Google Scholar
Doan TTY, Obbard JP. Improved Nile red staining of Nannochloropsis sp. J Appl Phycol. 2011;23:895–901.
Article
CAS
Google Scholar
Bertozzini E, Galluzzi L, Penna A, Magnani M. Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red. J Microbiol Methods. 2011;87:17–23. https://doi.org/10.1016/j.mimet.2011.06.018.
Article
CAS
PubMed
Google Scholar
Sitepu IR, Ignatia L, Franz AK, Wong DM, Faulina SA, Tsui M, et al. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. J Microbiol Methods. 2012;91:321–8. https://doi.org/10.1016/j.mimet.2012.09.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren HY, Liu BF, Kong F, Zhao L, Ren NQ. Improved Nile red staining of Scenedesmus sp. by combining ultrasonic treatment and three-dimensional excitation emission matrix fluorescence spectroscopy. Algal Res. 2015;7:11–5. https://doi.org/10.1016/j.algal.2014.11.007.
Article
Google Scholar
Wong DM, Nguyen TTN, Franz AK. Ethylenediaminetetraacetic acid (EDTA) enhances intracellular lipid staining with Nile red in microalgae Tetraselmis suecica. Algal Res. 2014;5:158–63. https://doi.org/10.1016/j.algal.2014.08.002.
Article
Google Scholar
Higgins BT, Thornton-Dunwoody A, Labavitch JM, Vandergheynst JS. Microplate assay for quantitation of neutral lipids in extracts from microalgae. Anal Biochem. 2014;465:81–9. https://doi.org/10.1016/j.ab.2014.07.020.
Article
CAS
PubMed
Google Scholar
Cooper MS, Hardin WR, Petersen TW, Cattolico RA. Visualizing “green oil” in live algal cells. J Biosci Bioeng. 2010;109:198–201. https://doi.org/10.1016/j.jbiosc.2009.08.004.
Article
CAS
PubMed
Google Scholar
Benito V, Goñi-de-Cerio F, Brettes P. BODIPY vital staining as a tool for flow cytometric monitoring of intracellular lipid accumulation in Nannochloropsis gaditana. J Appl Phycol. 2014;27:233–41.
Article
CAS
Google Scholar
Govender T, Ramanna L, Rawat I, Bux F. BODIPY staining, an alternative to the Nile red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol. 2012;114:507–11. https://doi.org/10.1016/j.biortech.2012.03.024.
Article
CAS
PubMed
Google Scholar
Brennan L, Blanco Fernández A, Mostaert AS, Owende P. Enhancement of BODIPY505/515lipid fluorescence method for applications in biofuel-directed microalgae production. J Microbiol Methods. 2012;90:137–43. https://doi.org/10.1016/j.mimet.2012.03.020.
Article
CAS
PubMed
Google Scholar
Back A, Rossignol T, Krier F, Nicaud JM, Dhulster P. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production. Microb Cell Factories. 2016;15:1–12.
Article
CAS
Google Scholar
De la Jara A, Molina C, Martel A, Molina C, Nordströn L, De la Rosa V, et al. Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J Appl Phycol. 2003;15:433–8.
Article
Google Scholar
Harchouni S, Field B, Menand B. AC-202, a highly effective fluorophore for the visualization of lipid droplets in green algae and diatoms. Biotechnol Biofuels. 2018;11:1–9. https://doi.org/10.1186/s13068-018-1117-9.
Article
CAS
Google Scholar
Kim HS, Guzman AR, Thapa HR, Devarenne TP, Han A. A droplet microfluidics platform for rapid microalgal growth and oil production analysis. Biotechnol Bioeng. 2016;113:1691–701.
Article
CAS
PubMed
Google Scholar
Lee DH, Bae CY, Han JI, Park JK. In situ analysis of heterogeneity in the lipid content of single green microalgae in alginate hydrogel microcapsules. Anal Chem. 2013;85:8749–56.
Article
CAS
PubMed
Google Scholar
Xie B, Stessman D, Hart JH, Dong H, Wang Y, Wright DA, et al. High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants. Plant Biotechnol J. 2014;12:872–82.
Article
CAS
PubMed
Google Scholar
Terashima M, Freeman ES, Jinkerson RE, Jonikas MC. A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants. Plant J. 2015;81:147–59.
Article
CAS
PubMed
Google Scholar
Capus A, Monnerat M, Ribeiro LC, de Souza W, Martins JL, Sant’Anna C. Application of high-content image analysis for quantitatively estimating lipid accumulation in oleaginous yeasts with potential for use in biodiesel production. Bioresour Technol. 2016;203:309–17.
Article
CAS
PubMed
Google Scholar
Davis RW, Jones HDT, Collins AM, Ricken JB, Sinclair MB, Timlin JA, et al. Label-free measurement of algal triacylglyceride production using fluorescence hyperspectral imaging. Algal Res. 2014;5:181–9. https://doi.org/10.1016/j.algal.2013.11.010.
Article
Google Scholar
Kimura K, Yamaoka M, Kamisaka Y. Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. J Microbiol Methods. 2004;56:331–8.
Article
CAS
PubMed
Google Scholar
Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J Microbiol Methods. 2009;77:41–7. https://doi.org/10.1016/j.mimet.2009.01.001.
Article
CAS
PubMed
Google Scholar
Gusbeth AC, Eing C, Göttel M, Sträßner R, Frey W. Fluorescence diagnostics for lipid status monitoring of microalgae during cultivation. Int J Renew Energy Biofuels. 2016;2016:1–10. https://doi.org/10.5171/2016.899698.
Article
Google Scholar
Sun T, Gawad S, Bernabini C, Green NG, Morgan H. Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations. Meas Sci Technol. 2007;18:2859–68.
Article
CAS
Google Scholar
Higashiyama K, Sugimoto T, Yonezawa T, Fujikawa S, Asami K. Dielectric analysis for estimation of oil content in the mycelia of Mortierella alpina. Biotechnol Bioeng. 1999;65:537–41.
Article
CAS
PubMed
Google Scholar
Wu Y, Huang C, Wang L, Miao X, Xing W, Cheng J. Electrokinetic system to determine differences of electrorotation and traveling-wave electrophoresis between autotrophic and heterotrophic algal cells. Colloids Surfaces A Physicochem Eng Asp. 2005;262:57–64.
Article
CAS
Google Scholar
Deng YL, Chang JS, Juang YJ. Separation of microalgae with different lipid contents by dielectrophoresis. Bioresour Technol. 2013;135:137–41. https://doi.org/10.1016/j.biortech.2012.11.046.
Article
CAS
PubMed
Google Scholar
Bono MS, Ahner BA, Kirby BJ. Detection of algal lipid accumulation due to nitrogen limitation via dielectric spectroscopy of Chlamydomonas reinhardtii suspensions in a coaxial transmission line sample cell. Bioresour Technol. 2013;143:623–31. https://doi.org/10.1016/j.biortech.2013.06.040.
Article
CAS
PubMed
Google Scholar
Chen Y, Vaidyanathan S. A simple, reproducible and sensitive spectrophotometric method to estimate microalgal lipids. Anal Chim Acta. 2012;724:67–72. https://doi.org/10.1016/j.aca.2012.02.049.
Article
CAS
PubMed
Google Scholar
Saifer A, Feldman NI. The photometric determination of gangliosides with the sulfo-phospho-vanillin reaction. J Lipid Res. 1971;12:112–5.
CAS
PubMed
Google Scholar
Knight JA, Anderson S, Rawle JM. Chemical basis of the Sulfo-phospho-vanillin Reactionfor EstimatingTotal serum lipids. Clin Chem. 1972;18:199–202.
CAS
PubMed
Google Scholar
Anschau A, Caruso CS, Kuhn RC, Franco TT. Validation of the sulfo-phosphovanillin (SPV) method for the determination of lipid content in oleaginous microorganisms. Brazilian J Chem Eng. 2017;34:19–27.
Article
CAS
Google Scholar
Byreddy AR, Gupta A, Barrow CJ, Puri M. A quick colorimetric method for total lipid quantification in microalgae. J Microbiol Methods. 2016;125:28–32. https://doi.org/10.1016/j.mimet.2016.04.002.
Article
CAS
PubMed
Google Scholar
Wawrik B, Harriman BH. Rapid, colorimetric quantification of lipid from algal cultures. J Microbiol Methods. 2010;80:262–6. https://doi.org/10.1016/j.mimet.2010.01.016.
Article
CAS
PubMed
Google Scholar
Cheng Y-SS, Zheng Y, VanderGheynst JS. Rapid quantitative analysis of lipids using a colorimetric method in a microplate format. Lipids. 2011;46:95–103. https://doi.org/10.1007/s11745-010-3494-0.
Article
CAS
PubMed
Google Scholar
Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, et al. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol. 2014;155:330–3. https://doi.org/10.1016/j.biortech.2013.12.077.
Article
CAS
PubMed
Google Scholar
Kim Y, Jeong SN, Kim B, Kim DP, Cho YK. Rapid and automated quantification of microalgal lipids on a spinning disc. Anal Chem. 2015;87:7865–71.
Article
CAS
PubMed
Google Scholar
Anschau A, Caruso CS, Kuhn RC, Franco TT, Byreddy AR, Gupta A, et al. Color holographic microscope for monitoring lipids in microalgae. J Microbiol Methods. 2017;31:262–6. https://doi.org/10.1016/j.biortech.2013.12.077.
Article
CAS
Google Scholar
Samek O, Jonáš A, Pilát Z, Zemánek P, Nedbal L, Tríska J, et al. Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors. 2010;10:8635–51.
Article
CAS
PubMed
PubMed Central
Google Scholar