New & Renewable Energy. In Energy Efficiency and Conservation. Hong Kong: Electrical and Mechanical Services Department. http://https://www.emsd.gov.hk/en/energy_efficiency/new_renewable_energy/ Accessed 13 Sept 2019.
Monitoring of solid waste in hong kong - waste statistics for 2017. Hong Kong: Statistics Unit - Environmental Protection Department; 2018. https://www.wastereduction.gov.hk/sites/default/files/msw2017.pdf. Accessed 13 Sept 2019.
Chung SS, Lau KY, Zhang C. Measuring bulky waste arisings in Hong Kong. Waste Manag. 2010;30:737–43.
Article
PubMed
Google Scholar
Thompson P. The agricultural ethics of biofuels: the food vs. fuel debate. Agriculture. 2012;2:339–58.
Article
Google Scholar
Spencer T. Alabama plant to begin producing ethanol from waste wood. In: Institute for Agriculture & Trade Policy; 2008.
Google Scholar
Abengoa celebrates grand opening of its first commercial-scale next generation biofuels plant. In: Abengoa Press Room. vol. 2014. United States. http://www.abengoa.com/web/en/novedades/hugoton/noticias/. Accessed 02 Dec 2019.
Bluefire renewable creates 52 jobs as site preparation continues on Fulton project; recovery act dollars at work. In: News from BlueFire Renewables Inc. vol. December 2, 2010. United States. https://bfreinc.com/. Accessed 02 Dec 2019.
Anaerobic organisms key to Coskata's rapid rise. In Ethanol Producers Magazine; 2008. http://biomassmagazine.com/articles/1736/anaerobic-organisms-key-to-coskata’s-rapid-rise. Accessed 13 Sept 2019.
DuPont breaks ground at 30 MMgy cellulosic ethanol facility. In Ethanol Producer Magazine; 2012. http://www.ethanolproducer.com/articles/9337/. Accessed 13 Sept 2019.
Schmidt S. Alabama town partners with Gulf Coast energy. In: Biomass Magazine; 2008.
Google Scholar
Kim SB, Park C, Kim SW. Process design and evaluation of production of bioethanol and beta-lactam antibiotic from lignocellulosic biomass. Bioresour Technol. 2014;172:194–200.
Article
CAS
PubMed
Google Scholar
Juneja A, Kumar D, Murthy GS. Economic feasibility and environmental life cycle assessment of ethanol production from lignocellulosic feedstock in Pacific northwest US. J Renew Sustain Ener. 2013;5:023142.
Article
CAS
Google Scholar
Jafari V, Labafzadeh SR, Jeihanipour A, Karimi K, Taherzadeh MJ. Construction and demolition lignocellulosic wastes to bioethanol. Renew Energ. 2011;36:2771–5.
Article
CAS
Google Scholar
Hasanly A, Khajeh Talkhoncheh M, Karimi AM. Techno-economic assessment of bioethanol production from wheat straw: a case study of Iran. Clean Technol Envir. 2017;20:357–77.
Article
CAS
Google Scholar
Gnansounou E, Dauriat A. Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol. 2010;101:4980–91.
Article
CAS
PubMed
Google Scholar
Crawford JT, Shan CW, Budsberg E, Morgan H, Bura R, Gustafson R. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: techno-economic assessment. Biotechnol Biofuels. 2016;9:141.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barrera I, Amezcua-Allieri MA, Estupiñan L, Martínez T, Aburto J. Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: case of sugarcane and blue agave bagasses. Chem Eng Res Des. 2016;107:91–101.
Article
CAS
Google Scholar
Baral NR, Shah A. Techno-economic analysis of utilization of stillage from a cellulosic biorefinery. Fuel Process Technol. 2017;166:59–68.
Article
CAS
Google Scholar
Kumar D, Murthy GS. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production. Biotechnol Biofuels. 2011;4:27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Michailos S. Process design, economic evaluation and life cycle assessment of jet fuel production from sugar cane residue. Environ Prog Sustain. 2018;37:1227–35.
Article
CAS
Google Scholar
van Rijn R, Nieves IU, Shanmugam KT, Ingram LO, Vermerris W. Techno-economic evaluation of cellulosic ethanol production based on pilot biorefinery data: a case study of sweet sorghum bagasse processed via L+SScF. Bioenergy Res. 2018;11:414–25.
Article
CAS
Google Scholar
Mupondwa E, Li X, Tabil L. Integrated bioethanol production from triticale grain and lignocellulosic straw in Western Canada. Ind Crop Prod. 2018;117:75–87.
Article
CAS
Google Scholar
Kumar D, Murthy GS. Life cycle assessment of energy and GHG emissions during ethanol production from grass straws using various pretreatment processes. Int J Life Cycle Ass. 2012;17:388–401.
Article
CAS
Google Scholar
Valdivia M, Galan JL, Laffarga J, Ramos JL. Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol. 2016;9:585–94.
Article
PubMed
PubMed Central
Google Scholar
Ragauskas AJ. Lignin ‘first’ pretreatments: research opportunities and challenges. Biofuels Bioprod Biorefin. 2018;12:515–7.
Article
CAS
Google Scholar
Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW. The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng. 2012;109:1083–7.
Article
CAS
PubMed
Google Scholar
Feng J, Hse CY, Yang Z, Wang K, Jiang J, Xu J. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts. Appl Catal A-Gen. 2017;542:163–73.
Article
CAS
Google Scholar
Yao G, Wu G, Dai W, Guan N, Li L. Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions. Fuel. 2015;150:175–83.
Article
CAS
Google Scholar
Zhang X, Tang W, Zhang Q, Wang T, Ma L. Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts. Appl Energy. 2018;227:73–9.
Article
CAS
Google Scholar
Wang H, Ruan H, Feng M, Qin Y, Job H, Luo L, et al. One-pot process for hydrodeoxygenation of lignin to alkanes using Ru-based bimetallic and bifunctional catalysts supported on zeolite Y. ChemSusChem. 2017;10:1846–56.
Article
CAS
PubMed
Google Scholar
Dong L, Shao Y, Han X, Liu X, Xia Q, Parker SF, et al. Comparison of two multifunctional catalysts [M/Nb2O5 (M = Pd, Pt)] for one-pot hydrodeoxygenation of lignin. Catal Sci Technol. 2018;8:6129–36.
Article
CAS
Google Scholar
Blank B, Cortright R, Beck T, Woods E, Jehring M. Catalysts for hydrodeoxygenation of oxygenated hydrocarbons to alcohols and cyclic ethers. pp. 45 pp., Cont.-in-part of U.S. Ser. No. 586,499: Virent, Inc., USA . 2015:45 pp., Cont.-in-part of U.S. Ser. No. 586,499.
Blommel P, Cortright R. Hydrogenation of carboxylic acids to increase yield of aromatics. pp. 38pp.: Virent, Inc., USA . 2014:38pp.
Blommel P, Held A, Goodwin R, Cortright R. Process for converting biomass to aromatic hydrocarbons. pp. 62pp.: Virent, Inc., USA . 2014:62pp.
Blommel P, Price R. Production of alternative gasoline fuels. pp. 39 pp.: Virent, Inc., USA . 2017:39 pp.
Cortright RD, Vollendorf NW, Hornemann CC, McMahon SP. Catalysts and methods for reforming oxygenated compounds. pp. No pp. given: Virent, Inc., USA . 2012:No pp. given.
Holladay J. Toward the use of current refinery infrastructure to produce gasoline, diesel and jet fuel from biomass. In: American Chemical Society; 2010. NWRM-172.
Google Scholar
Deuss PJ, Scott M, Tran F, Westwood NJ, de Vries JG, Barta K. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J Am Chem Soc. 2015;137:7456–67.
Article
CAS
PubMed
Google Scholar
Hidajat MJ, Riaz A, Park J, Insyani R, Verma D, Kim J. Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids. Chem Eng J. 2017;317:9–19.
Article
CAS
Google Scholar
Kong J, He M, Lercher JA, Zhao C. Direct production of naphthenes and paraffins from lignin. Chem Comm (Camb). 2015;51:17580–3.
Article
CAS
Google Scholar
Li Q, López N. Chirality, rigidity, and conjugation: a first-principles study of the key molecular aspects of lignin Depolymerization on Ni-based catalysts. ACS Catal. 2018;8:4230–40.
Article
CAS
Google Scholar
Long J, Zhang Q, Wang T, Zhang X, Xu Y, Ma L. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresour Technol. 2014;154:10–7.
Article
CAS
PubMed
Google Scholar
Nandiwale KY, Danby AM, Ramanathan A, Chaudhari RV, Subramaniam B. Zirconium-incorporated mesoporous silicates show remarkable lignin depolymerization activity. ACS Sustain Chem Eng. 2017;5:7155–64.
Article
CAS
Google Scholar
Shao Y, Xia Q, Dong L, Liu X, Han X, Parker SF, et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nat Commun. 2017;8:16104.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shu R, Xu Y, Ma L, Zhang Q, Wang C, Chen Y. Controllable production of guaiacols and phenols from lignin depolymerization using Pd/C catalyst cooperated with metal chloride. Chem Eng J. 2018;338:457–64.
Article
CAS
Google Scholar
Song Q, Wang F, Cai J, Wang Y, Zhang J, Yu W, et al. Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process. Energy Environ Sci. 2013;6:994–1007.
Article
CAS
Google Scholar
Sturgeon MR, O'Brien MH, Ciesielski PN, Katahira R, Kruger JS, Chmely SC, et al. Lignin depolymerisation by nickel supported layered-double hydroxide catalysts. Green Chem. 2014;16:824–35.
Article
CAS
Google Scholar
Wang H, Zhang L, Deng T, Ruan H, Hou X, Cort JR, et al. ZnCl2 induced catalytic conversion of softwood lignin to aromatics and hydrocarbons. Green Chem. 2016;18:2802–10.
Article
CAS
Google Scholar
Wang X, Rinaldi R. Bifunctional Ni catalysts for the one-pot conversion of organosolv lignin into cycloalkanes. Catal Today. 2016;269:48–55.
Article
CAS
Google Scholar
Xu W, Miller SJ, Agrawal PK, Jones CW. Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid. ChemSusChem. 2012;5:667–75.
Article
CAS
PubMed
Google Scholar
Ma X, Ma R, Hao W, Chen M, Yan F, Cui K, et al. Common pathways in Ethanolysis of Kraft lignin to platform chemicals over molybdenum-based catalysts. ACS Catal. 2015;5:4803–13.
Article
CAS
Google Scholar
Kang K, Gu X, Guo L, Liu P, Sheng X, Wu Y, et al. Efficient catalytic hydrolytic dehydrogenation of ammonia borane over surfactant-free bimetallic nanoparticles immobilized on amine-functionalized carbon nanotubes. Int J Hydrog Energy. 2015;40:12315–24.
Article
CAS
Google Scholar
Matson TD, Barta K, Iretskii AV, Ford PC. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels. J Am Chem Soc. 2011;133:14090–7.
Article
CAS
PubMed
Google Scholar
Xia Q, Chen Z, Shao Y, Gong X, Wang H, Liu X, et al. Direct hydrodeoxygenation of raw woody biomass into liquid alkanes. Nat Commun. 2016;7:11162.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jin S, Guan W, Tsang C-W, Yan DYS, Chan C-Y, Liang C. Enhanced Hydroconversion of lignin-derived oxygen-containing compounds over bulk nickel catalysts though Nb2O5 modification. Catal Lett. 2017;147:2215–24.
Article
CAS
Google Scholar
Jin S, Xiao Z, Chen X, Wang L, Guo J, Zhang M, et al. Cleavage of lignin-derived 4-O-5 aryl ethers over nickel nanoparticles supported on niobic acid-activated carbon composites. Ind Eng Chem Res. 2015;54:2302–10.
Article
CAS
Google Scholar
Jin S, Chen X, Li C, Tsang C-W, Lafaye G, Liang C. Hydrodeoxygenation of lignin-derived Diaryl ethers to aromatics and alkanes using nickel on Zr-doped niobium phosphate. ChemistrySelect. 2016;1:4949–56.
Article
Google Scholar
Li C, Jin S, Guan W, Tsang CW, Chu WK, Lau WK, Liang C: Chemical Precipitation Method for the Synthesis of Nb2O5 Modified Bulk Nickel Catalysts with High Specific Surface Area. J Vis Expt. 2018;132:e56987.
Guan W, Chen X, Jin S, Li C, Tsang C-W, Liang C. Highly stable Nb2O5–Al2O3 composites supported Pt catalysts for Hydrodeoxygenation of Diphenyl ether. Ind Eng Chem Res. 2017;56:14034–42.
Article
CAS
Google Scholar
Sergios Karatzos JDM, Jack N. Saddler. Summary of IEA Bioenergy Task 39 report: The potential and challenges of drop-in biofuels; 2014.
Google Scholar
Jiang W, Gu P, Zhang F. Steps towards ‘drop-in’ biofuels: focusing on metabolic pathways. Curr Opin Biotechnol. 2017;53:26–32.
Article
PubMed
CAS
Google Scholar
Pineda A, Lee AF. Heterogeneously catalyzed lignin depolymerization. App Pet Res. 2016;6:243–56.
Article
CAS
Google Scholar
Tudorache M, Opris C, Cojocaru B, Apostol NG, Tirsoaga A, Coman SM, et al. Highly efficient, easily recoverable, and recyclable re–SiO2–Fe3O4 catalyst for the fragmentation of lignin. ACS Sustain Chem Eng. 2018;6:9606–18.
Article
CAS
Google Scholar
Bender TA, Dabrowski JA, Gagné MR. Homogeneous catalysis for the production of low-volume, high-value chemicals from biomass. Nat Rev Chem. 2018;2:35–46.
Article
CAS
Google Scholar
Deuss PJ, Barta K, de Vries JG. Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catal Sci Technol. 2014;4:1174–96.
Article
CAS
Google Scholar
Karkas MD, Matsuura BS, Monos TM, Magallanes G, Stephenson CR. Transition-metal catalyzed valorization of lignin: the key to a sustainable carbon-neutral future. Org Biomol Chem. 2016;14:1853–914.
Article
CAS
PubMed
Google Scholar
Ferrari MD, Guigou M, Lareo C. Energy consumption evaluation of fuel bioethanol production from sweet potato. Bioresour Technol. 2013;136:377–84.
Article
CAS
PubMed
Google Scholar
Henao CA, Braden D, Maravelias CT, Dumesic JA. A Novel Catalytic Strategy for the Production of Liquid Fuels from Ligno-cellulosic Biomass. In: 21st European Symposium on Computer Aided Process Engineering; 2011. p. 1723–7.
Chapter
Google Scholar
Kwiatkowski JR, McAloon AJ, Taylor F, Johnston DB. Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind Crop Prod. 2006;23:288–96.
Article
CAS
Google Scholar
Braden DJ, Henao CA, Heltzel J, Maravelias CC, Dumesic JA. Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid. Green Chem. 2011;13:1755–65.
Article
CAS
Google Scholar
Patel AD, Serrano-Ruiz JC, Dumesic JA, Anex RP. Techno-economic analysis of 5-nonanone production from levulinic acid. Chem Eng J. 2010;160:311–21.
Article
CAS
Google Scholar
De Pretto C, Tardioli PW, Costa CBB. Modelling and Analysis of a Soybean Biorefinery for the Production of Refined Oil, Biodiesel and Different Types of Flours. In: 26th European Symposium on Computer Aided Process Engineering; 2016. p. 925–30.
Chapter
Google Scholar
Li X, Mupondwa E, Tabil L. Technoeconomic analysis of biojet fuel production from camelina at commercial scale: case of Canadian prairies. Bioresour Technol. 2018;249:196–205.
Article
CAS
PubMed
Google Scholar
Mupondwa E, Li X, Tabil L, Falk K, Gugel R. Technoeconomic analysis of camelina oil extraction as feedstock for biojet fuel in the Canadian prairies. Biomass Bioenergy. 2016;95:221–34.
Article
CAS
Google Scholar
Giwa A, Adeyemi I, Dindi A, Lopez CG-B, Lopresto CG, Curcio S, et al. Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: a review and case study. Renew Sustain Energ Rev. 2018;88:239–57.
Article
CAS
Google Scholar
Hunpinyo P, Narataruksa P, Tungkamani S, Pana-Suppamassadu K, Chollacoop N. Evaluation of techno-economic feasibility biomass-to-energy by using ASPEN plus®: a case study of Thailand. Energy Procedia. 2013;42:640–9.
Article
Google Scholar
Mel M, Yong AS, Ihsan SI, Setyobudi RH. Simulation study for economic analysis of biogas production from agricultural biomass. Energy Procedia. 2015;65:204–14.
Article
CAS
Google Scholar
Viell J, Harwardt A, Seiler J, Marquardt W. Is biomass fractionation by organosolv-like processes economically viable? A conceptual design study. Bioresour Technol. 2013;150:89–97.
Article
CAS
PubMed
Google Scholar
Demichelis F, Fiore S, Pleissner D, Venus J. Technical and economic assessment of food waste valorization through a biorefinery chain. Renew Sustain Energ Rev. 2018;94:38–48.
Article
Google Scholar
Setyobudi RH, Mel M, Riyad Hussein Abdeen F, Mohd Salleh H, Izan Ihsan S, Adyani Ahmad Fuad F, Hendroko Setyobudi R, Alasaarela E, Pasila F, Chan G et al: Simulation Study of Bio-Methane Conversion into Hydrogen for Generating 500 kW of Power. MATEC Web Conf. 2018;164:01027.
vom Stein T, Grande PM, Kayser H, Sibilla F, Leitner W, Domínguez de María P. From biomass to feedstock: one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system. Green Chem. 2011;13:1772–7.
Article
CAS
Google Scholar
Karakuts: Fractionation of Reformate. Chem Tech Fuels Oil+ 1994;30:11–12.
Hong kong. Strict fuel specs & emissions standards help improve air quality. In: Asian Clean Fuels Association News; 2010.
Google Scholar
Adnan Dahadha NT, Barakat S. Study of the research octane number depression of domestic kerosene-doped automotive gasoline. Adv Appl Sci Res. 2013;4:129–34.
Google Scholar
Jia Y, Wang C, Liang C, Qiu JS. Effect of CNT surface modification on catalytic performance of Pt/CNT for selective hydrogenation of o-Chloronitrobenzene. Chinese J Catal. 2009;30:1029–34.
Article
CAS
Google Scholar
Kong L. Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst. Bioresour Technol. 2019;276:310–7.
Article
CAS
PubMed
Google Scholar
Statutory minimum wage. In Labor Department: Public Services. Hong Kong: Labor Department; 2019. https://www.labour.gov.hk/eng/news/mwo.htm. Accessed 13 Sept 2019.
Bulk Tariff. In China LIght and Power. Hong Kong; 2017. https://www.clp.com.hk/en/customer-service/tariff/business-and-other-customers/bulk-tariff. Accessed 13 Sept 2019.
Histroical steam price. In Intratec: Steam Price History and Forecast; 2017. https://www.intratec.us/chemical-markets/steam-price. Accessed 13 Sept 2019.
Calculating the Water Costs of Water-Cooled Air Compressors. In Industrial Utility Efficiency: Chiller & Cooling Best Practices: Air Technology Group Hitachi America, Ltd; https://coolingbestpractices.com/technology/chillers/calculating-water-costs-water-cooled-air-compressors. Accessed 13 Sept 2019.
Nixon WA. Economics of using calcium chloride vs. Sodium chloride for deicing/anti-icing IOWA; 2008.
Google Scholar
Fees and charges for the disposal of chemical waste at the Chemical Waste Treatment Centre (CWTC). Hong Kong: Environmental Protection Department; 2015 https://www.epd.gov.hk/epd/english/news_events/press/press_070629a.html. Accessed 13 Sept 2019.
El M, Hernandez I. Truck versus pipeline transportation cost analysis of wastewater sludge; 2015.
Google Scholar
Outlook of flares reduction in nigeria. In ISSUU: The French Development Agency; 2017. https://issuu.com/objectif-developpement/docs/nt-34-flare-reduction-nigeria. Accessed 13 Sept 2019.
Sun Z. Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev. 2018;118:614–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong Kong corporate tax compliance and consulting. In PWC Tax Services: PWC Hong Kong; 2019.
Xylose market to reach a value of ~ US$ 2.9 bn by 2029. In. United States: Transparency market research; 26 Jul 2019. United States. https://www.transparencymarketresearch.com/pressrelease/xylose-market.htm. Accessed 02 Dec 2019.
Wood Pulp Market - Segmented by Geography - Growth, Trends, and Forecast (2019 - 2024). In: Mordor Intelligence. India; 2019. https://www.mordorintelligence.com/industry-reports/wood-pulp-market. Accessed 02 Dec 2019.
de Assis CA, Greca LG, Ago M, Balakshin MY, Jameel H, Gonzalez R, et al. Techno-economic assessment, scalability, and applications of aerosol lignin micro- and nanoparticles. ACS Sustain Chem. 2018;6:11853–68.
Article
CAS
Google Scholar
Price board gasoline. In Shell Fuels; 2019. https://www.shell.com.hk/en_hk/motorists/shell-fuels/price-board.html. Accessed 13 Sept 2019.